读《Deep Learning Tutorial》(台湾大学 李宏毅 深度学习教学ppt)后杂记

原ppt下载:pan.baidu.com/s/1nv54p9R,密码:3mty

需深入实践并理解的重要概念:

Deep Learning:

  • SoftMax Fuction(输出层归一化函数?)

DNN(Deep Neural Networks):

  • MSE(Means Square Error,均方误差) / CE(Cross Entropy,交叉熵)

- Use to minimum total loss for softmax layer. CE is better.

  • Mini-batch & batch_size(decides how many examples in a mini-batch)
  • Vanishing Gradient Problem(梯度消失问题)
  • ReLU(Rectified Linear Unit,线性纠正单元)

- As an activative function, used when the number of layers is quite large.

- Special cases of MaxOut

  • Learnable activation function
  • Adaptive learning rate

- Use a large rate first, then change to a small one

  • Momentum(动量原理)

- Use the optimizer Adam(Advanced Adagrad Momentum)

  • Overfitting Problem(过拟合问题)

- Use early stopping

  • Weight Decay(训练时用p%的dropout,测试时对权值做(1-p%)的调整后再获得输出)
  • Dropout(训练的过程舍弃神经元)

- Will change structure of networks while training. better than MaxOut

CNN(Convolutional Neural Networks):

  • Image recognization suits to use CNN because of 3 important properties:

1) Patterns are much smaller than the whole image

2) The same patterns appear in different regions

3) Subsampling pixels does not change the object

  • filter & channel
  • stride(step)
  • zero-padding
  • max-pooling
  • flattern
  • less parameters because of sharing weights
时间: 2024-10-07 11:52:52

读《Deep Learning Tutorial》(台湾大学 李宏毅 深度学习教学ppt)后杂记的相关文章

Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1

3.Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.1 http://blog.csdn.net/sunbow0 Spark MLlib Deep Learning工具箱,是根据现有深度学习教程<UFLDL教程>中的算法,在SparkMLlib中的实现.具体Spark MLlib Deep Learning(深度学习)目录结构: 第一章Neural Net(NN) 1.源码 2.源码解析 3.实例 第二章D

Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.2

3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.2 http://blog.csdn.net/sunbow0 第三章Convolution Neural Network (卷积神经网络) 2基础及源码解析 2.1 Convolution Neural Network卷积神经网络基础知识 1)基础知识: 自行google,百度,基础方面的非常多,随便看看就可以,只是很多没有把细节说得清楚和明白: 能把细节说清

Spark MLlib Deep Learning Convolution Neural Network (深度学习-卷积神经网络)3.3

3.Spark MLlib Deep Learning Convolution Neural Network(深度学习-卷积神经网络)3.3 http://blog.csdn.net/sunbow0 第三章Convolution Neural Network (卷积神经网络) 3实例 3.1 测试数据 按照上例数据,或者新建图片识别数据. 3.2 CNN实例 //2 测试数据 Logger.getRootLogger.setLevel(Level.WARN) valdata_path="/use

Deep Learning Tutorial - Classifying MNIST digits using Logistic Regression

Deep Learning Tutorial 由 Montreal大学的LISA实验室所作,基于Theano的深度学习材料.Theano是一个python库,使得写深度模型更容易些,也可以在GPU上训练深度模型.所以首先得了解python和numpy.其次,阅读Theano basic tutorial. Deep Learning Tutorial 包括: 监督学习算法: Logistic Regression - using Theano for something simple Multi

Deep Learning 15:RBM的学习

1.读学位论文“基于深度学习的人脸识别研究”: 对RBM.DBN的介绍比较详细,可以作为基础阅读,再去读英文论文. 2.RBM的推导: ①深度学习笔记 - RBM_百度文库 这个讲很直白,感觉非常好!也不知道是哪位大神写的 ②page ③Yoshua Bengio大神写的论文“ Learning Deep Architectures for AI”的第5部分.或者是这本书的第5部分 ④http://deeplearning.net/tutorial/rbm.html#equation-energ

简单读懂人工智能:机器学习与深度学习是什么关系

引言:随着AlphaGo战胜李世石,人工智能和深度学习这些概念已经成为一个非常火的话题.人工智能.机器学习与深度学习这几个关键词时常出现在媒体新闻中,并错误地被认为是等同的概念.本文将介绍人工智能.机器学习以及深度学习的概念,并着重解析它们之间的关系.本文将从不同领域需要解决的问题入手,依次介绍这些领域的基本概念以及解决领域内问题的主要思路.本文选自<Tensorflow:实战Google深度学习框架>. 从计算机发明之初,人们就希望它能够帮助甚至代替人类完成重复性劳作.利用巨大的存储空间和超

【 李宏毅深度学习合辑 】Advanced Topics in Deep Learning - Imitation Learning

You have to force experts to treat some uncommon and extreme situations. a mechanical way to learn However, we don't know rt if you use sequence GAN, you could get different D(taoi) in different steps. However here, it remains the same. 原文地址:https://

Deep Learning 17:DBN的学习_读论文“A fast learning algorithm for deep belief nets”的总结

1.论文“A fast learning algorithm for deep belief nets”的“explaining away”现象的解释: 见:Explaining Away的简单理解 2.论文“A fast learning algorithm for deep belief nets”的整个过程及其“Complementary priors”的解释: 见:paper:A fast learning algorithm for deep belief nets和 [2014041

Deep Learning Tutorial (翻译) 之 RBM

英文原文请参考http://www.deeplearning.net/tutorial/rbm.html 能量模型 Energy-based models associate a scalar energy to each configuration of the variables of interest.学习并修改相应的能量函数使得shape有较好的属性.