R语言数据去重

R语言常用的去重命令有unique duplicated

unique主要是返回一个把重复元素或行给删除的向量、数据框或数组

> x <- c(3:5, 11:8, 8 + 0:5)
> x
 [1]  3  4  5 11 10  9  8  8  9 10 11 12 13
> unique(x)
[1]  3  4  5 11 10  9  8 12 13
> unique(x, fromLast = TRUE)
[1]  3  4  5  8  9 10 11 12 13    #排序后的

> a
     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    1    2    4
[3,]    1    3    5
[4,]    1    2    3

> unique(a)
     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    1    2    4
[3,]    1    3    5   #去除重复的最后一行

duplicated主要是判定向量或数据框中的元素是否重复,它返回一个元素(行)是不是重复的逻辑向量

> duplicated(a)
[1] FALSE FALSE FALSE  TRUE    # 返回一个是否重复的逻辑判断

> a[!duplicated(a),]
     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    1    2    4
[3,]    1    3    5                         #去除重复的最后一行

如果把第二列有重复的去除,则需要加一个索引

> index <- duplicated(a[,2])
> index
[1] FALSE  TRUE FALSE  TRUE
> a[!index,]
     [,1] [,2] [,3]
[1,]    1    2    3
[2,]    1    3    5

时间: 2024-10-03 01:33:35

R语言数据去重的相关文章

R语言数据操作之apply系列

1 ###################R语言中apply类型问题 2 data<-data.frame(x=c(1,2,3,4),y=c(2,3,4,5),z=c(5,6,7,8)) 3 apply(data,2,mean)##apply针对数据框 4 lapply(data,mean)##lapply针对list,当然对dataframe也有效 5 data1<-list(a=1:10,b=exp(-3:3),c=c(FALSE,FALSE,FALSE)) 6 lapply(data1,

《美团 R 语言数据运营实战》

美团 R 语言数据运营实战 2018年08月02日 作者: 喻灿 刘强 文章链接 3689字 8分钟阅读 一.引言 近年来,随着分布式数据处理技术的不断革新,Hive.Spark.Kylin.Impala.Presto 等工具不断推陈出新,对大数据集合的计算和存储成为现实,数据仓库/商业分析部门日益成为各类企业和机构的标配.在这种背景下,是否能探索和挖掘数据价值,具备精细化数据运营的能力,就成为判定一个数据团队成功与否的关键. 在数据从后台走向前台的过程中,数据展示是最后一步关键环节.与冰冷的表

第二篇:R语言数据可视化之数据塑形技术

前言 绘制统计图形时,半数以上的时间会花在调用绘图命令之前的数据塑型操作上.因为在把数据送进绘图函数前,还得将数据框转换为适当格式才行. 本文将给出使用R语言进行数据塑型的一些基本的技巧,更多技术细节推荐参考<R语言核心手册>. 数据框塑型 1. 创建数据框 - data.frame() # 创建向量p p = c("A", "B", "C") # 创建向量q q = 1:3 # 创建数据框:含p/q两列 dat = data.fra

第四篇:R语言数据可视化之折线图、堆积图、堆积面积图

前言 折线图通常用来对两个连续变量的依存关系进行可视化,其中横轴很多时候是时间轴. 但横轴也不一定是连续型变量,可以是有序的离散型变量. 绘制基本折线图 本例选用如下测试数据集: 绘制方法是首先调用ggplot函数选定数据集,并在aes参数中指明横轴纵轴.然后调用条形图函数geom_line()便可绘制出基本折线图.R语言示例代码如下: # 基函数 ggplot(BOD, aes(x = Time, y = demand)) + # 折线图函数 geom_line()     运行结果: 向折线

R语言数据可视化之散点图

散点图简介 散点图通常是用来表述两个连续变量之间的关系,图中的每个点表示目标数据集中的每个样本. 同时散点图中常常还会拟合一些直线,以用来表示某些模型. 回到顶部 绘制基本散点图 本例选用如下测试数据集: 绘制方法是首先调用ggplot函数选定数据集,并在aes参数中指明横轴纵轴.然后调用散点图函数geom_point()便可绘制出基本散点图.R语言示例代码如下: 1 2 3 4 # 基函数 ggplot(ah, aes(x = ageYear, y = heightIn)) +   # 散点图

第三篇:R语言数据可视化之条形图

条形图简介 数据可视化中,最常用的图非条形图莫属,它主要用来展示不同分类(横轴)下某个数值型变量(纵轴)的取值.其中有两点要重点注意: 1. 条形图横轴上的数据是离散而非连续的.比如想展示两商品的价格随时间变化的走势,则不能用条形图,因为时间变量是连续的: 2. 有时条形图的值表示数值本身,但也有时是表示数据集中的频数,不要引起混淆: 绘制基本条形图 本例选用测试数据集如下: 绘制方法是首先调用ggplot函数选定数据集,并在aes参数中指明横轴纵轴.然后调用条形图函数geom_bar(stat

第五篇:R语言数据可视化之散点图

散点图简介 散点图通常是用来表述两个连续变量之间的关系,图中的每个点表示目标数据集中的每个样本. 同时散点图中常常还会拟合一些直线,以用来表示某些模型. 绘制基本散点图 本例选用如下测试数据集: 绘制方法是首先调用ggplot函数选定数据集,并在aes参数中指明横轴纵轴.然后调用散点图函数geom_point()便可绘制出基本散点图.R语言示例代码如下: # 基函数 ggplot(ah, aes(x = ageYear, y = heightIn)) + # 散点图函数 geom_point()

R语言数据合并使用merge数据追加使用rbind和cbind

R语言中的横向数据合并merge及纵向数据合并rbind的使用 我们经常会遇到两个数据框拥有相同的时间或观测值,但这些列却不尽相同.处理的办法就是使用merge(x, y ,by.x = ,by.y = ,all = ) 函数. #合并ID<-c(1,2,3,4)name<-c("A","B","C","D")score<-c(60,70,80,90)student1<-data.frame(ID,na

R语言--数据预处理

一.日期时间.字符串的处理 日期 Date: 日期类,年与日 POSIXct: 日期时间类,精确到秒,用数字表示 POSIXlt: 日期时间类,精确到秒,用列表表示 Sys.date(), date(), difftime(), ISOdate(), ISOdatetime() #得到当前日期时间 (d1=Sys.Date()) #日期 年月日 (d3=Sys.time()) #时间 年月日时分秒 通过format输出指定格式的时间 (d2=date()) #日期和时间 年月日时分秒 "Fri