●BZOJ 2005 NOI 2010 能量采集

题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=2005

题解:

一个带有容斥思想的递推。
%%%
首先,对于一个点 (x,y) 在路径 (0,0)->(x,y)上,经过的点数为 GCD(x,y)-1
所以改点的贡献为 2*GCD(x,y)-1
            N    M
那么,ANS = ∑    ∑(2*GCD(i,j)-1)
           i=1 j=1
显然超时。
考虑到 GCD<=100000,
那么是否可以求出 f[i] 表示 GCD==i的点对 (x,y)有多少个。
然后用f[i]去得出答案 (ans+=f[i]*(2*i-1))?
 
接下来就是神奇的递推了。
f[i]=(N/i)*(M/i) - f[i*k]  (i*k<=min(N,M))
上式中 (N/i)*(M/i) 求得的是 有i这个公约数的点对(x,y)的个数
因为这些点对的最大公约数GCD可能为 i,2i,3i......
所以减掉f[2i],f[3i],f[4i]......就得到了f[i].

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#define ll long long
using namespace std;
ll f[100005];
ll N,M,K,ans;
int main()
{
	freopen("energy.in","r",stdin);
	freopen("energy.out","w",stdout);
	cin>>N>>M; K=min(N,M);
	for(int i=K;i>=1;i--){
		f[i]=(N/i)*(M/i);
		for(int j=2;i*j<=K;j++)
			f[i]-=f[i*j];
		ans+=f[i]*(2*i-1);
	}
	printf("%lld",ans);
	return 0;
}
时间: 2024-10-12 01:48:27

●BZOJ 2005 NOI 2010 能量采集的相关文章

【BZOJ 2005】[Noi2010]能量采集

Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵. 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0). 能量汇集机器在汇集的过

【BZOJ 2005】[Noi2010]能量采集 (容斥原理| 欧拉筛+ 分块)

能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵. 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0). 能量汇集机器

[NOI 2010]能量采集

Description 题库链接 给你一个 \(n\times m\) 的坐标轴.对于坐标轴的每一个正整数整点 \((x,y)\) 其对答案产生的贡献为 \(2k+1\) ,其中 \(k\) 表示这个点与坐标原点连线,线段穿过了除端点外的 \(k\) 个点.求所有点的贡献和. \(1\leq n,m \leq 100000\) Solution 容易发现 \(k=gcd(x,y)-1\) ,故原式等于求 \[\begin{aligned}&\sum_{i=1}^n\sum_{j=1}^m(2(g

BZOJ 2007 NOI 2010 海拔 平面图最小割-&gt;最短路SPFA+pq

题目大意:给出一个城市各个道路的双向流量,城市的左上角的高度是0,城市的右下角的高度是1,若人流升高海拔就会消耗体力,问最小需要消耗多少体力. 思路:这道题才是真正的让我见识到了algorithm中的heap的强大. 分析这道题可以发现,一定会有一条分界线,这个分界线左边高度都为0,右边高度都是1,然后找到这条分界点就可以了.明显的最小割.但是数据量巨大,直接跑最大流会T,又是平面图,建立对偶图然后跑最短路,SPFA+pq在BZOJ上可以很快,如果有的OJ卡STL的话可以考虑SPFA+Heap,

●BZOJ 2006 NOI 2010 超级钢琴

题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2006 题解: RMQ + 优先队列 (+ 前缀) 记得在一两个月前,一次考试考了这个题目的简化版:序列中只有正整数.当时我们曰 :有负数的话就怕是莫得解法哦.然后,有负数的情况居然是NOI题...难哭. 1).首先尝试固定区间的右端点R.那么可取的左端点的范围就已经确定.所以对于右端点为 R的权和最大的区间就能够求出来了:先求出前缀序列 pre[],由于 sum = pre[R]-pre[

BZOJ 2006 NOI 2010 超级钢琴 堆+主席树

题目大意:给出一些音符,将它们组成和旋.和旋只能由[l,r]个音符组成.优美程度为所有音符的和.求k个和旋的又优美程度的最大和. 思路:先处理出来前缀和,以便O(1)去除一段的和.然后考虑对于一个音符来说,向左边扩展的音符是一段长度为r - l + 1的区间,取出的最大和是sum[i] - sum[p],sum[i]是一定的,要想让整段和最大,需要让sum[p]最小.之后就是区间k小值和堆得维护了,可以用时代的眼泪划分树,也可以用主席树. CODE: #include <vector> #in

BZOJ 2005 能量采集

Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵. 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0). 能量汇集机器在汇集的过

bzoj 2005 能量采集 - 容斥原理

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后, 栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列 有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n, 表示是在第x列,y的范围是1至m,表示是在第x列的第y棵. 由于能量汇集机器较大,不便移动,栋栋将它放在了 一个角上,坐标正好是(0, 0). 能量汇集机器在汇集的过程中有一定的能量

2005: [Noi2010]能量采集 - BZOJ

Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得非常整齐,一共有n列,每列有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,表示是在第x列,y的范围是1至m,表示是在第x列的第y棵. 由于能量汇集机器较大,不便移动,栋栋将它放在了一个角上,坐标正好是(0, 0). 能量汇集机器在汇集的过