Queue 实现生产者消费者模型

Python中,队列是线程间最常用的交换数据的形式。

Python Queue模块有三种队列及构造函数:

1、Python Queue模块的FIFO队列先进先出。 class Queue.Queue(maxsize)

2、LIFO类似于堆,即先进后出。 class Queue.LifoQueue(maxsize)

3、还有一种是优先级队列级别越低越先出来。 class Queue.PriorityQueue(maxsize)

此包中的常用方法(q = Queue.Queue()):

q.qsize() 返回队列的大小

q.empty() 如果队列为空,返回True,反之False

q.full() 如果队列满了,返回True,反之False

q.full 与 maxsize 大小对应

q.get([block[, timeout]]) 获取队列,timeout等待时间

q.get_nowait() 相当q.get(False)

非阻塞 q.put(item) 写入队列,timeout等待时间

q.put_nowait(item) 相当q.put(item, False)

q.task_done() 在完成一项工作之后,q.task_done() 函数向任务已经完成的队列发送一个信号

q.join() 实际上意味着等到队列为空,再执行别的操作

# coding=utf-8

import Queue
import threading
import time

q = Queue.Queue(maxsize=10)  # 创建一个队列对象,长度限制为10,maxsize小于1就代表无限制

def producer(name):
    count = 1
    while True:
        q.put(count)  # 将值放入队列中 默认block为True,无数据时调用线程暂停,否则抛出异常
        print "%s 生产了包子 %d" % (name, count)
        count += 1
        time.sleep(0.5)

def consumer(name):
    while True:
        conut_con = q.get()  # 从队列中取值 默认block为True,无数据时调用线程暂停,否则抛出异常
        print "%s 吃掉了包子 %d" % (name, conut_con)
        time.sleep(2)

pro = threading.Thread(target=producer, args=("德源",))
con = threading.Thread(target=consumer, args=("xu",))
con2 = threading.Thread(target=consumer, args=("sx",))

pro.start()
con.start()
con2.start()  # 开启线程
时间: 2024-11-02 15:30:54

Queue 实现生产者消费者模型的相关文章

#queue队列 #生产者消费者模型

1 #queue队列 #生产者消费者模型 2 3 #queue队列 #有顺序的容器 4 #程序解耦 5 #提高运行效率 6 7 #class queue.Queue(maxsize=0) #先入先出 8 #class queue.LifoQueue(maxsize=0)最后在第一 9 #class queue.PriorityQueue(maxsize=0) #存储数据时可设置优先级的队列#VIP客户 10 11 #Queue.qsize() 12 #Queue.empty() #return

Python学习笔记——进阶篇【第九周】———线程、进程、协程篇(队列Queue和生产者消费者模型)

Python之路,进程.线程.协程篇 本节内容 进程.与线程区别 cpu运行原理 python GIL全局解释器锁 线程 语法 join 线程锁之Lock\Rlock\信号量 将线程变为守护进程 Event事件 queue队列 生产者消费者模型 Queue队列 开发一个线程池 进程 语法 进程间通讯 进程池 参考链接http://www.cnblogs.com/alex3714/articles/5230609.html

13 join 线程锁之Lock\Rlock\信号量 将线程变为守护进程 Event事件  queue队列 生产者消费者模型 Queue队列 开发一个线程池

本节内容 操作系统发展史介绍 进程.与线程区别 python GIL全局解释器锁 线程 语法 join 线程锁之Lock\Rlock\信号量 将线程变为守护进程 Event事件 queue队列 生产者消费者模型 Queue队列 开发一个线程池 进程 语法 进程间通讯 进程池 操作系统发展史 手工操作(无操作系统) 1946年第一台计算机诞生--20世纪50年代中期,还未出现操作系统,计算机工作采用手工操作方式. 手工操作程序员将对应于程序和数据的已穿孔的纸带(或卡片)装入输入机,然后启动输入机把

python2.0_s12_day9之day8遗留知识(queue队列&生产者消费者模型)

4.线程 1.语法 2.join 3.线程锁之Lock\Rlock\信号量 4.将线程变为守护进程 5.Event事件 * 6.queue队列 * 7.生产者消费者模型 4.6 queue队列 queue非常有用,当信息必须安全的在多个线程之间进行数据交换的时候就应该想到queue 所以,queue它能保证数据被安全的在多个线程之间进行交换,那他就是天生的线程安全. queue有那么几种: class queue.Queue(maxsize=0) # 先入先出 class queue.LifoQ

python并发编程之多进程(二):互斥锁(同步锁)&进程其他属性&进程间通信(queue)&生产者消费者模型

一,互斥锁,同步锁 进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的, 竞争带来的结果就是错乱,如何控制,就是加锁处理 part1:多个进程共享同一打印终端 #并发运行,效率高,但竞争同一打印终端,带来了打印错乱 from multiprocessing import Process import os,time def work(): print('%s is running' %os.getpid()) time.sleep(2) print('

joinablequeue模块 生产者消费者模型 Manager模块 进程池 管道

一.生产者消费者 主要是为解耦(借助队列来实现生产者消费者模型) import queue  # 不能进行多进程之间的数据传输 (1)from multiprocessing import Queue    借助Queue解决生产者消费者模型,队列是安全的. q = Queue(num) num :为队列的最大长度 q.get() # 阻塞等待获取数据,如果有数据直接获取,如果没有数据,阻塞等待 q.put() # 阻塞,如果可以继续往队列中放数据,就直接放,不能放就阻塞等待 q.get_now

生产者消费者模型及队列,进程池

生产者消费者模型 生产者消费者模型 主要是为了解耦 可以借助队列来实现生产者消费者模型 栈 : 先进后出(First In Last Out 简称 FILO) 队列 : 先进先出(First In First Out 简称 FIFO) import queue #不能进行多进程之间的数据传输(1) from multiprocessing import Queue #借助Queue解决生产者消费者模型,队列是安全的q=Queue(num)num : 队列的最大长度q.get() #阻塞等待获取数

进程 >> 互斥锁、队列与管道、生产者消费者模型

目录 1.互斥锁 2.队列与管道 3.生产者消费者模型(Queue) 4.生产者消费者模型(JoinableQueue) 1.互斥锁 首先导入Lock模块 实例化一把锁 但是每次生成子进程的时候都会重新实例化一把锁,我们的目的是想让所有的子进程使用同一把锁,所以需要把锁传递给子进程在使用 锁名.acquire():开锁->所有子进程开始抢位置 锁名.release():关锁->位置排好了,开始执锁起来执行. join与互斥锁的区别:join是把所有的子进程代码变为串行的,而互斥锁则可以规定那几

队列、生产者消费者模型

目录 队列.生产者消费者模型.初识线程 一.用进程锁来优化抢票小程序 1.1 进程锁 1.2 优化抢票小程序 二.队列 2.1 队列的介绍 2.2 创建队列的类 2.3 使用队列的案例 三.生产者消费者模型 3.1 用队列Queue实现生产者消费者模型 3.2 用队列JoinableQueue实现生产者消费者模型 队列.生产者消费者模型.初识线程 一.用进程锁来优化抢票小程序 1.1 进程锁 进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端是没有问题的.而共享带来