C语言用递归求斐波那契数,让你发现递归的缺陷和效率瓶颈

递归是一种强有力的技巧,但和其他技巧一样,它也可能被误用。

一般需要递归解决的问题有两个特点:

  • 存在限制条件,当符合这个条件时递归便不再继续;
  • 每次递归调用之后越来越接近这个限制条件。

递归使用最常见的一个例子就是求阶乘,具体描述和代码请看这里:C语言递归和迭代法求阶乘

但是,递归函数调用将涉及一些运行时开销——参数必须压到堆栈中,为局部变量分配内存空间(所有递归均如此,并非特指求阶乘这个例子),寄存器的值必须保存等。当递归函数的每次调用返回时,上述这些操作必须还原,恢复成原来的样子。所以,
基于这些开销,对于递归求阶乘而言,它并没有简化问题的解决方案。

迭代求阶乘使用简单循环的程序,看上去不甚符合前面阶乘的数学定义,但它却能更为有效地计算出结果。如果你仔细观察递归函数,你会发现递归调用是函数所执行的最后一项任务。这个函数是尾部递归(tail
recursion)的一个例子。由于函数在递归调用返回之后不再执行任何任务,所以尾部递归可以很方便地转换成一个简单循环,完成相同的任务。

提示:许多问题是以递归的形式进行解释的,这只是因为它比非递归形式更为清晰。但是,这些问题的迭代实现往往比递归实现效率更高,虽然代码的可读性可能稍差一些,当一个问题相当复杂,难以用迭代形式实现时,此时递归实现的简洁性便可以补偿它所带来的运行时开销。

这里有一个更为极端的例子,菲波那契数就是一个数列,数列中每个数的值就是它前面两个数的和。 这种关系常常用递归的形式进行描述:

同样,这种递归形式的定义容易诱导人们使用递归形式来解决问题。这里有一个陷牌:它使用递归步骤计算Fibonacci(n-1)和Fibonacci(n-2)。但是,在计算Fibonacci(n-1)时也将计算Fibonacci(n-2)。这个额外的计算代价有多大呢?

答案是,它的代价远远不止一个冗余计算:每个递归调用都触发另外两个递归调用,而这两个调用的任何一个还将触发两个递归调用,再接下去的调用也是如此。这样,冗余计算的数量增长得非常快。例如,在递归计算Fibonacci(10)时,Fibonacci(3)的值被计算了21次。但是,在递归计算
Fibonacci(30)时,Fibonacci(3)的值被计算了317811次。当然,这317811次计算所产生的结果是完全一样的,除了其中之一外,其余的纯属浪费。这个额外的开销真是相当恐怖!

如果使用一个简单循环来代替递归,这个循环的形式肯定不如递归形式符合前面菲波那契数的抽象定义,但它的效率提高了几十万倍!

当你使用递归方式实现一个函数之前,先问问你自己使用递归带来的好处是否抵得上它的代价。 而且你必须小心:这个代价可能比初看上去要大得多。

不信请看下面的代码,分别用递归和迭代计算斐波那契数,效率差距真是大的惊人。

  1. #include <stdio.h>
  2. #include <time.h>
  3. #include <windows.h>
  4. // 递归计算斐波那契数
  5. long fibonacci_recursion( int n )
  6. {
  7. if( n <= 2 )
  8. return 1;
  9. return fibonacci_recursion(n-1) + fibonacci_recursion(n-2);
  10. }
  11. // 迭代计算斐波那契数
  12. long fibonacci_iteration( int n )
  13. {
  14. long result;
  15. long previous_result;
  16. long next_older_result;
  17. result = previous_result = 1;
  18. while( n > 2 ){
  19. n -= 1;
  20. next_older_result = previous_result;
  21. previous_result = result;
  22. result = previous_result + next_older_result;
  23. }
  24. return result;
  25. }
  26. int main(){
  27. int N = 45;
  28. // 递归消耗的时间
  29. clock_t recursion_start_time = clock();
  30. long result_recursion = fibonacci_recursion(N);
  31. clock_t recursion_end_time = clock();
  32. // 迭代消耗的时间
  33. clock_t iteration_start_time = clock();
  34. long result_iteration = fibonacci_iteration(N);
  35. clock_t iteration_end_time = clock();
  36. // 输出递归消耗的时间
  37. printf("Result of recursion: %ld \nTime: %fseconds",
  38. fibonacci_recursion(N),
  39. (double)(recursion_end_time-recursion_start_time)/CLOCKS_PER_SEC
  40. );
  41. printf("\n-----------------------\n");
  42. // 输出迭代消耗的时间
  43. printf("Result of iteration: %ld \nTime: %fseconds",
  44. fibonacci_iteration(N),
  45. (double)(iteration_end_time-iteration_start_time)/CLOCKS_PER_SEC
  46. );
  47. return 0;
  48. }

运行结果:

Result of recursion: 1134903170
Time: 7.494000 seconds
---------------------------------------
Result of iteration: 1134903170
Time: 0.000000 seconds

注意:上面的程序最好在GCC(Linux下的GCC或Windows下的Code:Blocks)下运行,VC下可能统计不到运行时间。

看吧,用递归花了将近7.5秒的时间,但是用迭代几乎不费吹灰之力,效率快到统计不到运行时间。

时间: 2024-09-30 22:55:52

C语言用递归求斐波那契数,让你发现递归的缺陷和效率瓶颈的相关文章

递归求斐波那契数

斐波那契数列主要思想是利用前两个数求和算出下一个数,利用函数的递归思想,F(n)=F(n-1)+F(n-2),F(n)先搁置,计算F(n-1),要计算F(n-1)就要先计算F(n-2)和F(n-3),依次递归下去,直到第一第二位数,这两个数是已知的,这样就可以回去一层一层的算出F(3).F(4).F(5)....F(n-2).F(n-1),最后得到F(n)的值. 1 using System; 2 using System.Collections.Generic; 3 using System.

249 递归:概念,利用递归求1~n的阶乘,利用递归求斐波那契数列,利用递归遍历数据

6.1什么是递归 递归:如果一个函数在内部可以调用其本身,那么这个函数就是递归函数. 简单理解: 函数内部自己调用自己, 这个函数就是递归函数 注意:递归函数的作用和循环效果一样,由于递归很容易发生"栈溢出"错误(stack overflow),所以必须要加退出条件return. <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"&g

php 两种方式实现求 斐波那契数

使用递归方式. //使用递归方式求斐波那契数 public function fb($n){ // if( $n <=2){ return 1; }else{ return fb($n-1) + fb($n-2); } } 使用递推方式. //使用递推方式求斐波那契数 public function fb2($n){ // if( $n <=2){ return 1; } $t1 = 1;$t2 = 1; for($i=3;$i<$n;$i++){ $temp = $t1; $t1 =

hdu1568&amp;&amp;hdu3117 求斐波那契数前四位和后四位

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1568 题意:如标题所示,求斐波那契数前四位,不足四位直接输出答案 斐波那契数列通式: 当n<=20的时候,不足四位,所以直接打表. 当n>20的时候,大于四位的时候,ans满足这个公式:ans=-0.5*log10(5.0)+num*1.0*log10((1+sqrt(5.0))/2.0); 这个公式是怎么来的呢?我们可以对an取10的对数,根据对数的性质. log10(ans)=log10(1/

求斐波那契数的python语言实现---递归和迭代

迭代实现如下: def fab(n): n1 = 1 n2 = 1 if n<1: print("输入有误!") return -1 while (n-2)>0: n3 = n2+n1 n1 = n2 n2 = n3 n-=1 return n3 number = int(input("请输入要求的斐波那契数的第几个数:")) result = fab(number) print(result) 递归实现如下: def fab(n): if n==1 o

递归求斐波那契数列

using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace ConsoleApplication1 { class Program { static void Main(string[] args) { Console.Write("输入想求的斐波那契数列项数:"); int n = Conver

斐波那契数与二分法的递归与非递归算法及其复杂度分析

1. 什么是斐波那契数? 这里我借用百度百科上的解释:斐波那契数,亦称之为斐波那契数列(意大利语: Successione di Fibonacci),又称黄金分割数列.费波那西数列.费波拿契数.费氏数列,指的是这样一个数列:0.1.1.2.3.5.8.13.21.--在数学上,斐波纳契数列以如下被以递归的方法定义:F0=0,F1=1,Fn=Fn-1+Fn-2(n>=2,n∈N*),用文字来说,就是斐波那契数列列由 0 和 1 开始,之后的斐波那契数列系数就由之前的两数相加.特别指出:0不是第一

HDU 1568 Fibonacci【求斐波那契数的前4位/递推式】

Fibonacci Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Problem Description 2007年到来了.经过2006年一年的修炼,数学神童zouyu终于把0到100000000的Fibonacci数列 (f[0]=0,f[1]=1;f[i] = f[i-1]+f[i-2](i>=2))的值全部给背了下来. 接下来,CodeStar决定要考考他,于是每问他一

【C语言】求斐波那契(Fibonacci)数列通项(递归法、非递归法)

意大利的数学家列昂那多·斐波那契在1202年研究兔子产崽问题时发现了此数列.设一对大兔子每月生一对小兔子,每对新生兔在出生一个月后又下崽,假若兔子都不死亡.   问:一对兔子,一年能繁殖成多少对兔子?题中本质上有两类兔子:一类是能生殖的兔子,简称为大兔子:新生的兔子不能生殖,简称为小兔子:小兔子一个月就长成大兔子.求的是大兔子与小兔子的总和. 月     份  ⅠⅡ  Ⅲ  Ⅳ  Ⅴ Ⅵ  Ⅶ  Ⅷ Ⅸ Ⅹ  Ⅺ  Ⅻ大兔对数 1  1   2   3   5  8  13  21 34 55