Python八大算法的实现,插入排序、希尔排序、冒泡排序、快速排序、直接选择排序、堆排序、归并排序、基数排序。

Python八大算法的实现,插入排序、希尔排序、冒泡排序、快速排序、直接选择排序、堆排序、归并排序、基数排序。
1、插入排序
描述
插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置),而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。
代码实现

  1. def insert_sort(lists):
  2.  # 插入排序
  3.  count = len(lists)
  4.  for i in range(1, count):
  5.      key = lists[i]
  6.      j = i - 1
  7.      while j >= 0:
  8.          if lists[j] > key:
  9.              lists[j + 1] = lists[j]
  10.             lists[j] = key
  11.         j -= 1
  12. return lists

2、希尔排序
描述
希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
代码实现

  1. def shell_sort(lists):
  2.  # 希尔排序
  3.  count = len(lists)
  4.  step = 2
  5.  group = count / step
  6.  while group > 0:
  7.      for i in range(0, group):
  8.          j = i + group
  9.          while j < count:
  10.             k = j - group
  11.             key = lists[j]
  12.             while k >= 0:
  13.                 if lists[k] > key:
  14.                     lists[k + group] = lists[k]
  15.                     lists[k] = key
  16.                 k -= group
  17.             j += group
  18.     group /= step
  19. return lists

3、冒泡排序
描述
它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
代码实现

  1. def bubble_sort(lists):
  2.  # 冒泡排序
  3.  count = len(lists)
  4.  for i in range(0, count):
  5.      for j in range(i + 1, count):
  6.          if lists[i] > lists[j]:
  7.              lists[i], lists[j] = lists[j], lists[i]
  8.  return lists

4、快速排序
描述
通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
代码实现

  1. def quick_sort(lists, left, right):
  2.  # 快速排序
  3.  if left >= right:
  4.      return lists
  5.  key = lists[left]
  6.  low = left
  7.  high = right
  8.  while left < right:
  9.      while left < right and lists[right] >= key:
  10.         right -= 1
  11.     lists[left] = lists[right]
  12.     while left < right and lists[left] <= key:
  13.         left += 1
  14.     lists[right] = lists[left]
  15. lists[right] = key
  16. quick_sort(lists, low, left - 1)
  17. quick_sort(lists, left + 1, high)
  18. return lists

5、直接选择排序
描述
基本思想:第1趟,在待排序记录r1 ~ r[n]中选出最小的记录,将它与r1交换;第2趟,在待排序记录r2 ~ r[n]中选出最小的记录,将它与r2交换;以此类推,第i趟在待排序记录r[i] ~ r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。
代码实现

  1. def select_sort(lists):
  2.  # 选择排序
  3.  count = len(lists)
  4.  for i in range(0, count):
  5.      min = i
  6.      for j in range(i + 1, count):
  7.          if lists[min] > lists[j]:
  8.              min = j
  9.      lists[min], lists[i] = lists[i], lists[min]
  10. return lists

6、堆排序
描述
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。
代码实现

  1. def adjust_heap(lists, i, size):
  2.  lchild = 2 * i + 1
  3.  rchild = 2 * i + 2
  4.  max = i
  5.  if i < size / 2:
  6.      if lchild < size and lists[lchild] > lists[max]:
  7.          max = lchild
  8.      if rchild < size and lists[rchild] > lists[max]:
  9.          max = rchild
  10.     if max != i:
  11.         lists[max], lists[i] = lists[i], lists[max]
  12.         adjust_heap(lists, max, size)
  13. def build_heap(lists, size):
  14. for i in range(0, (size / 2))[::-1]:
  15.     adjust_heap(lists, i, size)
  16. def heap_sort(lists):
  17. size = len(lists)
  18. build_heap(lists, size)
  19. for i in range(0, size)[::-1]:
  20.     lists[0], lists[i] = lists[i], lists[0]
  21.     adjust_heap(lists, 0, i)

7、归并排序
描述
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;否则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复制到r中从下标k到下标t的单元。归并排序的算法我们通常用递归实现,先把待排序区间[s,t]以中点二分,接着把左边子区间排序,再把右边子区间排序,最后把左区间和右区间用一次归并操作合并成有序的区间[s,t]。
代码实现

  1. def merge(left, right):
  2.  i, j = 0, 0
  3.  result = []
  4.  while i < len(left) and j < len(right):
  5.      if left[i] <= right[j]:
  6.          result.append(left[i])
  7.          i += 1
  8.      else:
  9.          result.append(right[j])
  10.         j += 1
  11. result += left[i:]
  12. result += right[j:]
  13. return result
  14. def merge_sort(lists):
  15. # 归并排序
  16. if len(lists) <= 1:
  17.     return lists
  18. num = len(lists) / 2
  19. left = merge_sort(lists[:num])
  20. right = merge_sort(lists[num:])
  21. return merge(left, right)

8、基数排序
描述
基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些“桶”中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。
代码实现

  1. import math
  2. def radix_sort(lists, radix=10):
  3.  k = int(math.ceil(math.log(max(lists), radix)))
  4.  bucket = [[] for i in range(radix)]
  5.  for i in range(1, k+1):
  6.      for j in lists:
  7.          bucket[j/(radix**(i-1)) % (radix**i)].append(j)
  8.      del lists[:]
  9.      for z in bucket:
  10.         lists += z
  11.         del z[:]
  12. return lists

直接插入排序、希尔排序、 冒泡排序 、快速排序 、直接选择排序、 堆排序 、归并排序 、基数排序的比较
阅读数 367

原文地址:https://www.cnblogs.com/abdm-989/p/11552404.html

时间: 2024-10-10 09:11:42

Python八大算法的实现,插入排序、希尔排序、冒泡排序、快速排序、直接选择排序、堆排序、归并排序、基数排序。的相关文章

排序:快速排序与选择排序

       在最近的学习中,对于排序算法进行了一定的学习,在这里对快速排序和选择排序的部分内容进行说明,其余内容在后期会进行补充,感谢大家提出宝贵意见. 宏定义如下: <strong><span style="font-size:18px;">#include <iostream> using namespace std; #define M 21 typedef int SqList[M];</span></strong>

php 实现冒泡算法排序、快速排序、选择排序,插入排序

许多人都说 算法是程序的核心,一个程序的好于差,关键是这个程序算法的优劣.作为一个初级phper,虽然很少接触到算法方面的东西 .但是对于冒泡排序,插入排序,选择排序,快速排序四种基本算法,我想还是要掌握的.下面是我按自己的理解,将四个方法分析一遍. 需求:分别用 冒泡排序法,快速排序法,选择排序法,插入排序法将下面数组中 的值按照从小到的顺序进行排序.  $arr(1,43,54,62,21,66,32,78,36,76,39); 1. 冒泡排序法   *     思路分析:法如其名,就是像冒

C# 插入排序 冒泡排序 选择排序 高速排序 堆排序 归并排序 基数排序 希尔排序

以下列出了数据结构与算法的八种基本排序:插入排序 冒泡排序 选择排序 高速排序 堆排序 归并排序 基数排序 希尔排序,然后是測试的样例.代码位置:http://download.csdn.net/detail/luozuolincool/8040027 排序类: public class Sortings { //插入排序 public void insertSort(int[] array) { int temp = 0; int index = 0; for (int i = 0; i <

C# 插入排序 冒泡排序 选择排序 快速排序 堆排序 归并排序 基数排序 希尔排序

下面列出了数据结构与算法的八种基本排序:插入排序 冒泡排序 选择排序 快速排序 堆排序 归并排序 基数排序 希尔排序,然后是测试的例子.代码位置:http://download.csdn.net/detail/luozuolincool/8040027 排序类: public class Sortings { //插入排序 public void insertSort(int[] array) { int temp = 0; int index = 0; for (int i = 0; i <

直接插入排序、二分插入排序、希尔排序、冒泡排序与简单选择排序

一.直接插入排序 稳定,时间复杂度:最好O(n).最差O(n^2).平均O(n^2),空间复杂度O(1) void InsertSort(int L[], int n) { int i, j,key; for (i = 1; i<n; i++) if(L[i] < L[i-1])//需要将L[i]插入到有序表L[0...i-1] { key = L[i]; for(j = i-1; j >= 0 && key < L[j]; j--)//后移 L[j+1] = L[

七大内部排序算法总结(插入排序、希尔排序、冒泡排序、简单选择排序、快速排序、归并排序、堆排序)

 写在前面: 排序是计算机程序设计中的一种重要操作,它的功能是将一个数据元素的任意序列,重新排列成一个按关键字有序的序列.因此排序掌握各种排序算法非常重要.对下面介绍的各个排序,我们假定所有排序的关键字都是整数.对传入函数的参数默认是已经检查好了的.只是简单的描述各个算法并给出了具体实现代码,并未做其他深究探讨. 基础知识: 由于待排序的记录数量不同,使得排序过程中设计的存储器不同,可将排序方法分为两大类:一类是内部排序,指的是待排序记录存放在计算机随机存储器中进行的排序过程.另一类是外部排序,

排序(二)__冒泡排序、简单选择排序和直接插入排序

前面<排序(一)__综述>提到按照算法的复杂度分为简单算法和改进算法两大类,本文主要就简单算法中的冒泡排序.简单选择排序和直接插入排序进行通俗详细的解析. 一.冒泡排序 1.基本概念 冒泡排序是一种交换排序,它的基本思想是:两两比较相邻记录的关键字,如果反序则交换,直到没有反序的记录为止.(动态图来自维基百科) 2.关键代码(优化之后) void BubbleSort(SqList *L) { int i,j; Status flag=TRUE;            //flag用作标记,避

排序算法学习之简单排序(冒泡排序,简单选择排序,直接插入排序)

一.冒泡排序 冒泡排序算是最基础的一种算法了,复杂度为O(N^2),其基本思想是:从最低端数据开始,两两相邻比较,如果反序则交换.代码如下: /*最基本的冒泡排序*/ void BubbleSort1 (int n, int *array) /*little > big*/ { int i, j; for (i=0; i<n-1; i++) { for (j=n-1; j>i; j--) { if (array[j] < array[j-1]) { int temp = array

冒泡排序、简单选择排序、直接插入排序

冒泡排序(Bubble Sort)的基本思想:两两比较相邻记录的关键字,如果反序则交换,直到没有反序的记录为止.时间复杂度为O(n2). 简单选择排序(Simple Selection Sort)的基本思想:通过n-i次关键字之间的比较,从n-i+1个记录中选出关键字最小的记录,并和第i个记录交换.应该说,尽管与冒泡排序同为O(n2), 但简单选择排序的性能上还是要略优于冒泡排序. 直接插入排序(Straight Insertion Sort)的基本思想:将一个记录插入到前面已经排序好的有序表中