problem:
The gray code is a binary numeral system where two successive values differ in only one bit.
Given a non-negative integer n representing the total number of bits in the code, print the sequence of gray code. A gray code sequence must begin with 0.
For example, given n = 2, return [0,1,3,2]
.
Its gray code sequence is:
00 - 0 01 - 1 11 - 3 10 - 2
Note:
For a given n, a gray code sequence is not uniquely defined.
For example, [0,2,3,1]
is also
a valid gray code sequence according to the above definition.
For now, the judge is able to judge based on one instance of gray code sequence. Sorry about that.
Hide Tags
题意:首先要知道格雷码的定义,求N位的格雷码,并把它转换成 int 型输出
thinking:
(1)严格按照格雷码定义来,格雷码有一个递推公式:
利用上述公式可以递推(回溯)出N位格雷码,我这里采用字符串的处理方式实现上述公式,原理一样。
code:
class Solution { public: vector<int> grayCode(int n) { vector<int> ret; if(n==0) { ret.push_back(0); return ret; } if(n==1) { ret.push_back(0); ret.push_back(1); return ret; } if(n==2) { ret.push_back(0); ret.push_back(1); ret.push_back(3); ret.push_back(2); return ret; } vector<string> gc2; gc2.push_back(string("00")); gc2.push_back(string("01")); gc2.push_back(string("11")); gc2.push_back(string("10")); vector<string> gc(gc2); int length=4; for(int i=3;i<=n;i++) { length*=2; vector<string> gc_tmp(length,string("")); for(int j=0;j<length/2;j++) { string str0="0"+gc[j]; string str1="1"+gc[length/2-j-1]; gc_tmp[j]=str0; gc_tmp[j+length/2]=str1; } gc=gc_tmp; } for(int i=0;i<gc.size();i++) ret.push_back(string_to_int(gc[i])); return ret; } protected: int string_to_int(string str) { cout<<str<<endl; int m=str.size(); double res=0; for(int i=0;i<m;i++) { res+=(str.at(i)-'0')*pow(2,m-i-1); } return int(res); } };
时间: 2024-10-16 12:16:42