概率的二项分布和多项分布

http://zhangxw.gotoip1.com/ZCL/part2/C11g.htm

概率的二项分布和多项分布

本章用到了概率论中的二项分布和多项分布公式,这里做简要说明。

一个事件必然出现,就说它100%要出现。100%=1,所以100%出现的含义就是出现的概率P=1。

即必然事件的出现概率为1。

二项分布

如果掷一枚硬币,正面向上的结局的概率为0.5 。反面向上的结局的概率也是0.5 。那么出现正面向上事件或者反面向上事件的概率就是0.5+0.5=1 ,即二者必居其一。

如果掷两次硬币,根据独立事件的概率乘法定理那么两次都是正面(反面)向上的概率是0.5×0.5=0.25。另外第一个是正第二个是反的出现概率也是0.5×0.5=0.25。同理第一个反第二个正的出现概率也是0.5×0.5=0.25。于是一正一反的概率是前面两个情况的和,即0.25+0.25=2×0.25=0.5 。它们的合计值仍然是1。列成表就是:


两个正面的概率


一正一反的概率


两个反面的概率


0.25


2×0.25=0.5


0.25

 

注意到代数学中

(a+b)2=a2+2ab+b2,

而在a=0.5,b=0.5时,有

12=(0.5+0.5)2=0.25+2×0.5×0.5+0.25=1

这说明掷两次硬币的各个结局的出现概率可以通过对二项式的平方展开而得到。顺此,对于掷n次硬币的各种结局的出现概率也可以通过对二项式的n次方的展开而得到。

例如n=3时,有(注意0.5×0.5×0.5=0.125)

13=(0.5+0.5)3=0.125+3×0.125+3×0.125+0.125=

0.125+0.375+0.375+0.125=1

上式4项中的4个概率值0.125、0.375、0.375、0.125分别对应于3正、2正1反、1正2反和3反,这四种结局。

注意到对二项式的展开的牛顿公式:

(a+b)n=an+nan-1b++[n!/m!(n-m)!](an-mbm)+…bn

a,b分别等于0.5代入上式我们就得到n+1项,以其通项而论,它就代表了有n-m个正面m个反面的事件的出现概率。即这种类型的问题(如掷多次硬币)的概率分布恰好可以用二项式展开的牛顿公式表示。而这也就是为什么把这种概率分布类型称为二项分布的原因。

如果a,b并不等于0.5,那么只要把A事件出现的概率以p代入,把B事件的出现概率以(1-p)代入,以上公式仍然正确,(a+b仍然=1)。

所以对于仅有A,B两个结局的随机事件,如果A事件出现概率为p,B事件的出现概率为1-p,那么在n次随机实验中A事件出现n-m 次B事件出现m次的情况(对应一种复合事件)的出现概率P应当是(这里的P是大写的)

P=[n!/m!(n-m)!][pn-m(1-p)m]

注意到上面公式的对称性,它也可以写为

P=[n!/m!(n-m)!][pm(1-p)n-m]

它就是所谓二项分布概型的随机事件的出现概率公式,也是牛顿二项式展开在变量为对应概率值的情况下的通项。它就是本章公式(11.3)的由来。

另外,当p=0.5时,显然[pm(1-p)n-m]总是等于1/(2)n,注意到[p+(1-p)]n=1,所以二项式公式展开的n+1项的各个系数的合计值应当等于2n

上式中并没有p,所以这个系数和公式与p的具体数值无关。一般概率图书中对二项分布多有介绍。

多项分布

把二项分布公式再推广,就得到了多项分布(在一般概率书中很少介绍它,但是热力学中涉及到它)。

某随机实验如果有k个可能结局A1,A2,…,Ak,它们的概率分布分别是p1,p2,…,pk,那么在N次采样的总结果中,A1出现n1次,A2出现n2次,…,Ak出现nk次的这种事件的出现概率P有下面公式:

这就是多项分布的概率公式。把它称为多项式分布显然是因为它是一种特殊的多项式展开式的通项。

我们知道,在代数学里当k变量的和的N次方的展开式 (p1+ p2+…+ p)N是一个多项式,其一般项就是前面的公式给出的值。如果这变量恰好是可能有的各种结局的出现概率,那么,由于这些概率的合计值对应一个必然事件的概率。而必然事件的概率等于1,于是上面的多项式就变成了

(p1+ p2+…+ p)N =1N=1

即此时多项式的值等于1。

因为(p1+ p2+…+ p)N的值等于1。我们也就认为它代表了一个必然事件进行了次抽样的概率(=1,必然事件)。而当把这个多项式可以展开成很多项时,这些项的合计值等于1提示我们这些项是一些互不相容的事件(N次抽样得到的)的对应概率。即多项式展开式的每一项都是一个特殊的事件的出现概率。于是我们把展开式的通项作为A1出现n1次,A2出现n2次,…,Ak出现nk次的这种事件的出现概率。这样就得到了前面的公式。

如果各个单独事件的出现概率p1,p2,…,pk都相等,即p1=p2=…=pk=p(注意这里是小写的p),

注意到p1+p2+…+pk =1,就得到p1= p2 =…=pk =p=1/

把这个值代入多项式的展开式,就使展开式的各个项的合计值满足下式:

∑[ N!/(n1!n2!…nk!)](1/k)N=1

即∑[ N!/(n1!n2!…nk!)]=kN

以上求和中遍及各个ni的一切可能取的正整数值,但是要求各个ni的合计值等于。   即

n1+n2+…nk=N

在热力学讨论物质微观状态的可能个数时,经常用另外的思路引出N!/(n1!n2!…nk!)式。并且称它为热力学几率。它是一个比天文数字还大很多的数,把它称为几率(概率)并不妥当。但是热力学里由于各个微观状态的出现概率相等,这对应我们在前面讨论的p1= p2 =…=pk =p=1/k于是

[N!/(n1!n2!…nk!)](1/kN

就真正具有数学上的概率的含义。换句话说,物理学里的热力学几率[N!/(n1!n2!…nk!)]乘上(1/kN)以后就是数学中定义的(具有归一性)的概率了。

时间: 2025-01-13 06:41:28

概率的二项分布和多项分布的相关文章

伯努利分布、二项分布、多项分布、Beta分布、Dirichlet分布

1. 伯努利分布 伯努利分布(Bernoulli distribution)又名两点分布或0-1分布,介绍伯努利分布前首先需要引入伯努利试验(Bernoulli trial). 伯努利试验是只有两种可能结果的单次随机试验,即对于一个随机变量X而言: 伯努利试验都可以表达为“是或否”的问题.例如,抛一次硬币是正面向上吗?刚出生的小孩是个女孩吗?等等 如果试验E是一个伯努利试验,将E独立重复地进行n次,则称这一串重复的独立试验为n重伯努利试验.进行一次伯努利试验,成功(X=1)概率为p(0<=p<

概率统计13——二项分布与多项分布

原文 | https://mp.weixin.qq.com/s/bOchsmHTINKKlyabCQKMSg 相关阅读 最大似然估计(概率10) 寻找“最好”(3)函数和泛函的拉格朗日乘数法 伯努利分布 如果随机试验仅有两个可能的结果,那么这两个结果可以用0和1表示,此时随机变量X将是一个0/1的变量,其分布是单个二值随机变量的分布,称为伯努利分布.注意伯努利分布关注的是结果只有0和1,而不管观测条件是什么. 性质 设p是随机变量等于1的概率,伯努利分布有一些特殊的性质: 将上面的两个式子合并:

二项分布 , 多项分布, 以及与之对应的beta分布和狄利克雷分布

1. 二项分布与beta分布对应 2. 多项分布与狄利克雷分布对应 3. 二项分布是什么?n次bernuli试验服从 二项分布 二项分布是N次重复bernuli试验结果的分布. bernuli实验是什么?做一次抛硬币实验,该试验结果只有2种情况,x= 1, 表示正面. x=0,表示反面. bernuli(x|p) = p^x*(1-p)^(1-x).如果了n次, 我们只要数一下正面的次数n_x,即可得到反面的次数n-n_x. n次重复的nernuli试验: n-bernuli(n_x|N,p)

机会的度量:概率和分布

在概率论中所说的事件(event)相当于集合论中的集合(set). 互补事件的概率 如果一个不出现,则另一个肯定出现的两个事件成为互补事件(complementary events,或者互余事件或对立事件).按照集合的记号,如果一个事件记为A,那么另一个记为的补集.P(A) + P(A) = 1 ,P(A) = 1 − P(A).(初中学的吧) 比如西方赌博时常常爱用优势或赔率.如果你赢的概率为0.6,那么就说成是你有6对4的优势会赢,或者4对6的优势会输. 概率的加法 如果两个事件不可能同时发

概率统计——讲透最经典的三种概率分布

本文始发于个人公众号:TechFlow 这一讲当中我们来探讨三种经典的概率分布,分别是伯努利分布.二项分布以及多项分布. 在我们正式开始之前,我们先来明确一个概念,我们这里说的分布究竟是什么? 无论是在理论还是实际的实验当中,一个事件都有可能有若干个结果.每一个结果可能出现也可能不出现,对于每个事件而言出现的可能性就是概率.而分布,就是衡量一个概率有多大. 伯努利分布 明确了分布的概念之后,我们先从最简单的伯努利分布开始. 伯努利分布非常简单,就是假设一个事件只有发生或者不发生两种可能,并且这两

【数据分析/挖掘底层算法】原创实现二项分布算法以及应用

7.2 二项分布算法 作者 白宁超 2015年8月15日22:51:38 摘要:本文继统计学几何分布.二项分布.泊松分布研究的深入,基于各种分布基础概念和核心知识介绍之后.就各种分布的实现和真实环境下应用方是目的.在进行一系列相互独立实验,每次既有成功,又有失败的可能,且单次实验成功概率相等.在一系列试验中求成功的次数.这种情况下适用于本算法.本算法中在n次伯努利试验中:试验n次得到r次成功的概率.二项分布的期望.二项分布方差的具体实现. 目录 统计学之离散概率分布的运用 统计学之几何分布.二项

机器学习中的数学系列-概率与统计

1,基本概念 (1)期望 \( E(X)=\sum_i{x_ip_i} \) ------------------- important ---------------- E(kX) = kE(X) E(X+Y) = E(X)+E(Y) 当X和Y相互独立:E(XY)=E(X)E(Y) (这个不能反向推哦) ----------------------------------------------- (2)方差 \( D(X)=\sum_i{(x_i-E(X))^2p_i} \) 从这个式子可以

PLSA详解

pLSA的原理理解 首先,我们直接来看一下pLSA是一个什么东西,从简单入手.不去管参数计算的问题,先弄明白pLSA的目的再说. pLSA其实不过是提出了一种关于人在写文章时的假设,一篇文章是由单词组成的,那么这些单词的产生过程是什么样的呢?pLSA认为就是人在写文章的时候会首先想到几个主题,那么这篇文章就是由这几种主题组成的. 比如:家,买东西,回忆,人生等等.当然,这几种主题在这篇文章中不可能是平均分配的,互相所占的比例不一样. 人在想到了这些主题以后就开始写出具体的单词,而在每种主题的影响

主题模型TopicModel:LDA中的数学模型

http://blog.csdn.net/pipisorry/article/details/42672935 了解LDA需要明白如下数学原理: 一个函数:gamma函数 四个分布:二项分布.多项分布.beta分布.Dirichlet分布 一个概念和一个理念:共轭先验和贝叶斯框架 两个模型:pLSA.LDA(文档-主题,主题-词语) 一个采样:Gibbs采样 估计未知参数所采用的不同思想:频率学派.贝叶斯学派 皮皮Blog gamma函数 Gamma函数 Γ(x)=∫∞0tx?1e?tdt 通过