hadoop中Combiner使用中需要注意的地方

今天在写一个MR的时候,用到了combiner。在使用过程中,遇到了一些问题,特此记录一下。

Combiner分为两种,一种是可插拔的,一种是不可插拔的。

可插拔的:Combiner和Reduce的处理逻辑是一样的,可以直接使用Reduce类进行处理。如果去掉Combiner,不影响结果。

不可插拔:Combiner和Reduce的处理逻辑不一样,如果去掉Combiner,会影响结果。

在使用不可插拔的Combiner过程中需要注意的是,其输出的key和value要和Map输出的key和value一致,要不然会报错。

时间: 2024-10-13 09:04:26

hadoop中Combiner使用中需要注意的地方的相关文章

Hadoop中Combiner的使用

文章转载于:http://blog.csdn.net/ipolaris/article/details/8723782 Hadoop中Combiner的使用 在MapReduce中,当map生成的数据过大时,带宽就成了瓶颈,怎样精简压缩传给Reduce的数据,有不影响最终的结果呢.有一种方法就是使用Combiner,Combiner号称本地的Reduce,Reduce最终的输入,是Combiner的输出.下面以<Hadoop in action>中的专利数据为例.我们打算统计每个国家的专利数目

浅析 Hadoop 中的数据倾斜

转自:http://my.oschina.net/leejun2005/blog/100922 最近几次被问到关于数据倾斜的问题,这里找了些资料也结合一些自己的理解. 在并行计算中我们总希望分配的每一个task 都能以差不多的粒度来切分并且完成时间相差不大,但是集群中可能硬件不同,应用的类型不同和切分的数据大小不一致总会导致有部分任务极大的拖慢了整个任务的完成时间,硬件不同就不说了,应用的类型不同其中就比如page rank 或者data mining 里面一些计算,它的每条记录消耗的成本不太一

hadoop中Configuration类剖析

Configuration是hadoop中五大组件的公用类,所以放在了core下,org.apache.hadoop.conf.Configruration.这个类是作业的配置信息类,任何作用的配置信息必须通过Configuration传递,因为通过Configuration可以实现在多个mapper和多个reducer任务之间共享信息. 类图 说明:Configuration实现了Iterable和Writable两个接口,其中实现Iterable是为了迭代,迭代出Configuration对

Hadoop 中利用 mapreduce 读写 mysql 数据

Hadoop 中利用 mapreduce 读写 mysql 数据 有时候我们在项目中会遇到输入结果集很大,但是输出结果很小,比如一些 pv.uv 数据,然后为了实时查询的需求,或者一些 OLAP 的需求,我们需要 mapreduce 与 mysql 进行数据的交互,而这些特性正是 hbase 或者 hive 目前亟待改进的地方. 好了言归正传,简单的说说背景.原理以及需要注意的地方: 1.为了方便 MapReduce 直接访问关系型数据库(Mysql,Oracle),Hadoop提供了DBInp

深度分析如何在Hadoop中控制Map的数量

深度分析如何在Hadoop中控制Map的数量 [email protected] 很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定.在默认情况下,最终input 占据了多少block,就应该启动多少个Mapper.如果输入的文件数量巨大,但是每个文件的size都小于HDFS的blockSize,那么会造成 启动的Mapper等于文件的数量(即每个文件都占据了一个block),那么很可能造成启动的Mapper数量超出限制而导致崩溃.这些逻

java.lang.Comparable, java.util.Compartor区别以及Hadoop中关于自定义类型中的compare方法

public interface Comparable<T> { public int compareTo(T o); } 规定了对象内部比较的方法 public interface Comparator<T> { int compare(T o1, T o2); boolean equals(Object obj); } 定义外部比较器的基本方法,其中equals是用来确定两个比较器是否相等. 关于对象内部比较和外部比较这两个接口的区别和使用场景如下: 个人总结: Compara

[转] - hadoop中使用lzo的压缩

在hadoop中使用lzo的压缩算法可以减小数据的大小和数据的磁盘读写时间,不仅如此,lzo是基于block分块的,这样他就允许数据被分解成chunk,并行的被hadoop处理.这样的特点,就可以让lzo在hadoop上成为一种非常好用的压缩格式. lzo本身不是splitable的,所以当数据为text格式时,用lzo压缩出来的数据当做job的输入是一个文件作为一个map.但是sequencefile本身是分块的,所以sequencefile格式的文件,再配上lzo的压缩格式,就可实现lzo文

关于学习Hadoop中未总结的资料

出自:http://www.cnblogs.com/xia520pi/archive/2012/01/02/2310118.html 1)Cygwin相关资料 (1)Cygwin上安装.启动ssh服务失败.ssh localhost失败的解决方案 地址:http://blog.163.com/pwcrab/blog/static/16990382220107267443810/ (2)windows2003+cygwin+ssh 地址:http://wenku.baidu.com/view/37

Java编程中尽可能要做到的一些地方

最近的机器内存又爆满了,除了新增机器内存外,还应该好好review一下我们的代码,有很多代码编写过于随意化,这些不好的习惯或对程序语言的不了解是应该好好打压打压了. 下面是参考网络资源总结的一些在Java编程中尽可能要做到的一些地方. 1.尽量在合适的场合使用单例 使用单例可以减轻加载的负担,缩短加载的时间,提高加载的效率,但并不是所有地方都适用于单例,简单来说,单例主要适用于以下三个方面: 控制资源的使用,通过线程同步来控制资源的并发访问: 控制实例的产生,以达到节约资源的目的: 控制数据共享