POJ 3436 ACM Computer Factory

最大流+拆点

#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<vector>
#include<queue>
#include<algorithm>
using namespace std;

const int maxn = 2000 + 10;
const int INF = 0x7FFFFFFF;
struct Edge
{
    int from, to, cap, flow;
    Edge(int u, int v, int c, int f) :from(u), to(v), cap(c), flow(f) {}
};
vector<Edge>edges;
vector<int>G[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
int n, m, s, t;

void init()
{
    for (int i = 0; i < maxn; i++) G[i].clear();
    edges.clear();
}
void AddEdge(int from, int to, int cap)
{
    edges.push_back(Edge(from, to, cap, 0));
    edges.push_back(Edge(to, from, 0, 0));
    int w = edges.size();
    G[from].push_back(w - 2);
    G[to].push_back(w - 1);
}
bool BFS()
{
    memset(vis, 0, sizeof(vis));
    queue<int>Q;
    Q.push(s);
    d[s] = 0;
    vis[s] = 1;
    while (!Q.empty())
    {
        int x = Q.front();
        Q.pop();
        for (int i = 0; i<G[x].size(); i++)
        {
            Edge e = edges[G[x][i]];
            if (!vis[e.to] && e.cap>e.flow)
            {
                vis[e.to] = 1;
                d[e.to] = d[x] + 1;
                Q.push(e.to);
            }
        }
    }
    return vis[t];
}
int DFS(int x, int a)
{
    if (x == t || a == 0)
        return a;
    int flow = 0, f;
    for (int &i = cur[x]; i<G[x].size(); i++)
    {
        Edge e = edges[G[x][i]];
        if (d[x]+1 == d[e.to]&&(f=DFS(e.to,min(a,e.cap-e.flow)))>0)
        {
            edges[G[x][i]].flow+=f;
            edges[G[x][i] ^ 1].flow-=f;
            flow+=f;
            a-=f;
            if(a==0) break;
        }
    }
    if(!flow) d[x] = -1;
    return flow;
}
int dinic(int s, int t)
{
    int flow = 0;
    while (BFS())
    {
        memset(cur, 0, sizeof(cur));
        flow += DFS(s, INF);
    }
    return flow;
}

int P,N;
int Q[maxn],S[maxn][maxn],D[maxn][maxn];
struct ANS
{
    int a,b,c;
};
vector<ANS>A;

bool ok(int a,int b)
{
    for(int i=1; i<=P; i++)
    {
        if(S[b][i]==0&&D[a][i]==1) return false;
        if(S[b][i]==1&&D[a][i]==0) return false;
    }
    return true;
}

int main()
{
    while(~scanf("%d%d",&P,&N))
    {
        init();
        s=0;
        t=N+N+1;
        for(int i=1; i<=N; i++)
        {
            scanf("%d",&Q[i]);
            for(int j=1; j<=P; j++) scanf("%d",&S[i][j]);
            for(int j=1; j<=P; j++) scanf("%d",&D[i][j]);
        }
        for(int i=1; i<=N; i++) AddEdge(i,i+N,Q[i]);
        for(int i=1; i<=N; i++)
        {
            int j;
            for(j=1; j<=P; j++) if(S[i][j]==1) break;
            if(j==P+1) AddEdge(s,i,INF);
        }

        for(int i=1; i<=N; i++)
        {
            int j;
            for(j=1; j<=P; j++) if(D[i][j]==0) break;
            if(j==P+1) AddEdge(i+N,t,INF);
        }

        for(int i=1; i<=N; i++)
            for(int j=1; j<=N; j++)
                if(ok(i,j))
                    AddEdge(i+N,j,INF);

        int Ans=dinic(s,t);

        printf("%d",Ans);
        A.clear();
        for(int i=0; i<edges.size(); i=i+2)
            if(edges[i].from>=N+1&&edges[i].from<=N+N)
                if(edges[i].to>=1&&edges[i].to<=N)
                    if(edges[i].flow!=0)
                    {
                        ANS e;
                        e.a=edges[i].from-N;
                        e.b=edges[i].to;
                        e.c=edges[i].flow;
                        A.push_back(e);
                    }
        printf(" %d\n",A.size());
        for(int i=0; i<A.size(); i++)
            printf("%d %d %d\n",A[i].a,A[i].b,A[i].c);
    }
    return 0;
}
时间: 2024-12-29 12:26:20

POJ 3436 ACM Computer Factory的相关文章

POJ 3436 ACM Computer Factory(网络最大流)

http://poj.org/problem?id=3436 ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5286   Accepted: 1813   Special Judge Description As you know, all the computers used for ACM contests must be identical, so the particip

Poj 3436 ACM Computer Factory (最大流)

题目链接: Poj 3436 ACM Computer Factory 题目描述: n个工厂,每个工厂能把电脑s态转化为d态,每个电脑有p个部件,问整个工厂系统在每个小时内最多能加工多少台电脑? 解题思路: 因为需要输出流水线要经过的工厂路径,如果要用电脑状态当做节点的话,就GG了.所以建图的时候要把工厂当做节点.对于节点i,能生产si电脑的节点可以进入节点i,能转化ei电脑的节点可以由i节点进入.要注意对于每一个节点要进行拆点,防止流量发生错误. 1 #include <queue> 2 #

POJ 3436 ACM Computer Factory (最大流 + 输出路径)

POJ 3436 ACM Computer Factory 链接:http://poj.org/problem?id=3436 题意:每台电脑有P部分,可以通过不同的机器来进行加工.有N台机器,每台机器用2 P +1 个整数来描述:Qi  Si,1  Si,2 ...  Si,p  Di,1  Di,2. ..  Di,p,其中Qi 指定了机器的性能,表示每小时加工的电脑数量.Si,j 为第j 部分的输入规格,0表示该部分不能被加工过,1表示该部分必须被加工过,2表示都可以.Di,k 为第k 部

18.11.23 POJ 3436 ACM Computer Factory(dinic)

描述 As you know, all the computers used for ACM contests must be identical, so the participants compete on equal terms. That is why all these computers are historically produced at the same factory. Every ACM computer consists of P parts. When all the

POJ - 3436 ACM Computer Factory 网络流

POJ-3436:http://poj.org/problem?id=3436 题意 组配计算机,每个机器的能力为x,只能处理一定条件的计算机,能输出特定的计算机配置.进去的要求有1,进来的计算机这个位子就要求为1,进去的要求有0,进来的计算机这个位子就要求为0. 思路 因为点上有容量限制,所以把每个点拆掉,连一条容量为这个机器的能力的边.源点向要求为0的机器连容量inf的边,把能完全组装好计算机的机器连向汇点.中间把符合条件的机器间连边,容量为inf: #include <algorithm>

POJ 3436 ACM Computer Factory(最大流+路径输出)

http://poj.org/problem?id=3436 题意: 每台计算机包含P个部件,当所有这些部件都准备齐全后,计算机就组装完成了.计算机的生产过程通过N台不同的机器来完成,每台机器用它的性能(每小时组装多少台电脑).输入/输出规格来描述. 输入规格描述了机器在组装计算机时哪些部件必须准备好了.输入规格是由P个整数组成,每个整数代表一个部件,这些整数取值为0.1或2,其中0表示该部件不应该已经准备好了,1表示该部件必须已经准备好了,2表示该部件是否已经准备好了无关紧要. 输出规格描述了

poj 3436 ACM Computer Factory 最大流拆点+输出路径

题目链接: poj3436 题意: 每台ACM 计算机包含P 个部件,当所有这些部件都准备齐全后,计算机就可以组装了,组装好以后就可以交给竞赛队伍使用了.计算机的生产过程是全自动的,通过N 台不同的机器来完成.每台机器从一台半成品计算机中去掉一些部件,并加入一些新的部件(去除一些部件在有的时候是必须的,因为计算机的部件不能以任意的顺序组装).每台机器用它的性能(每小时组装多少台计算机).输入/输出规格来描述. 输入规格描述了机器在组装计算机时哪些部件必须准备好了.输入规格是由P 个整数组成,每个

POJ - 3436 ACM Computer Factory (ISAP EK Dinic)

题目大意:有N台机器,每台机器能处理相应型态的电脑,处理完后,电脑将变成另一种形态. 每台机器有相应的工作限度,每次至多处理K台 现在问,在一次流水线生产中,最多可以产生多少台完整的电脑(流水线指的是在每一台机器的工作限度下) 解题思路:题目比较难理解,理解题目的话,就比较好做了 首先,将每台机器的点拆成两个点,权值为工作限度 如果机器能处理的电脑的状态全是0的话,就将其和超级源点连接,表示该机器进行第一步加工 如果机器处理完后的形态与另一台机器能处理的最初形态相同,就将其连线,表示下一台机器可

POJ 3436 ACM Computer Factory 【网络流】【北大ACM/ICPC竞赛训练】

我ac掉网络流的第一题! 先总结一下网络流的一些算法吧,首先是Ford-Fulkerson算法,这个算法是保证了众多网络流算法的[正确性],其他算法也是基于其[优化]得到的.Ford的算法在于引入"反向边"的概念,反向边就是反悔边,代表你给修正以前走了的边一个机会.为什么反向边是对的呢,凭空加进来一条边真的大丈夫吗,关于这个有相关正确性的证明,我也说不清楚只能直觉上去理解. 之后是Edmonds-Karp即最短增广路算法,顾名思义,每次都找到达汇点边数最少的增广路,由此避免一些特定的消