【prufer编码】BZOJ1430 小猴打架

Description

一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友。每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友。经过N-1次打架之后,整个森林的小猴都会成为好朋友。 现在的问题是,总共有多少种不同的打架过程。 比如当N=3时,就有{1-2,1-3}{1-2,2-3}{1-3,1-2}{1-3,2-3}{2-3,1-2}{2-3,1-3}六种不同的打架过程。

Solution

有一种神奇的prufer码,这种码和一棵树一一对应。

由树转码的过程:每次找到编号最小的叶节点为a,它所连的点为b,把b加入prufer码,直到只有两个点为止(prufer码长度为n-2)。

由码转树的过程:设序列a为1~n,第i次找到编号最小的不在prufer码中出现的ai,连接ai和bi,最后在a中剩下的两点连一条边。

这两个转换都是唯一的,且任意一种码都可以变成树,所以一一对应。

对于prufer码的n-2位,每一位都有n中选择,所以n节点的树有n^(n-2)种(结点本质不同)。

那么这题就是裸题了,答案为n^(n-2)*(n-1)!。

Code

 1 #include<cstdio>
 2 #include<algorithm>
 3 #include<cstring>
 4 #define ll long long
 5 using namespace std;
 6 const int mod=9999991;
 7
 8 ll pow(ll x,int k){
 9     ll ret=1;
10     for(int i=k;i;i>>=1,x=x*x%mod)
11         if(i&1) ret=ret*x%mod;
12     return ret;
13 }
14
15 int main(){
16     ll n;
17     scanf("%lld",&n);
18     ll ans=pow(n,n-2);
19     for(int i=1;i<n;i++)
20         ans=ans*i%mod;
21     printf("%lld\n",ans);
22     return 0;
23 }
时间: 2024-12-20 05:02:11

【prufer编码】BZOJ1430 小猴打架的相关文章

[bzoj1430]小猴打架_prufer序列

小猴打架 bzoj-1430 题目大意:题目链接. 注释:略. 想法: 我们发现打架的情况就是一棵树. 我们只需要把确定树的形态然后乘以$(n-1)!$表示生成这棵树时边的顺序. 一共$n$个节点我们发现数的形态一共有$n^{n-2}$种. 所以答案就是$n^{n-2}\cdot (n-1)!$. Code: #include <iostream> #include <cstdio> #include <cstring> #include <algorithm&g

bzoj1430 小猴打架

Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会成为好朋友. 现在的问题是,总共有多少种不同的打架过程. 比如当N=3时,就有{1-2,1-3}{1-2,2-3}{1-3,1-2}{1-3,2-3}{2-3,1-2}{2-3,1-3}六种不同的打架过程. Input 一个整数N. Output 一行,方案数mod 9999991. S

[BZOJ1430] 小猴打架 (数学)

Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会成为好朋友. 现在的问题是,总共有多少种不同的打架过程. 比如当N=3时,就有{1-2,1-3}{1-2,2-3}{1-3,1-2}{1-3,2-3}{2-3,1-2}{2-3,1-3}六种不同的打架过程. Input 一个整数N. Output 一行,方案数mod 9999991. S

【BZOJ 1430】 1430: 小猴打架 (Prufer数列)

1430: 小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 625  Solved: 452 Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会成为好朋友. 现在的问题是,总共有多少种不同的打架过程. 比如当N=3时,就有{1-2,1-3}{1-2,2-3}{1-3,1-2}{1-

「Luogu4430」小猴打架

「Luogu4430」小猴打架 题目描述 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会成为好朋友. 现在的问题是,总共有多少种不同的打架过程. 比如当N=3时,就有{1-2,1-3}{1-2,2-3}{1-3,1-2}{1-3,2-3}{2-3,1-2}{2-3,1-3}六种不同的打架过程. 输入输出格式 输入格式: 一个整数N. 输出格式: 一行,方案

bzoj 1430: 小猴打架

1430: 小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 634  Solved: 461[Submit][Status][Discuss] Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会成为好朋友. 现在的问题是,总共有多少种不同的打架过程. 比如当N=3时,就有{1-2,

1430: 小猴打架

1430: 小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 335  Solved: 241[Submit][Status] Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打架之后,整个森林的小猴都会成为好朋友. 现在的问题是,总共有多少种不同的打架过程. 比如当N=3时,就有{1-2,1-3}{1-2,

【BZOJ】【1430】小猴打架

排列组合 蛮逗的…… 这题题干描述的就一股浓浓的Kruskal的气息……很容易就想到是求一个n个点的完全图的生成树个数,然后由于有序,再乘一个n-1的排列数(n-1条边的全排列)即(n-1)! 但是我一下就卡在了 完全图的生成树个数这个地方……怎么也想不出来……后来看了题解,原来这是一个奇葩的结论:[n^(n-2)] 好吧剩下的就是水了……完全无压力…… Cayley公式 1 /***********************************************************

「模拟赛20180406」膜树 prufer编码+概率

题目描述 给定一个完全图,保证\(w_{u,v}=w_{v,u}\)且\(w_{u,u}=0\),等概率选取一个随机生成树,对于每一对\((u,v)\),求\(dis(u,v)\)的期望值对\(998244353\)取模. 输入 第一行一个数\(n\) 接下来\(n\)行,每行\(n\)个整数,第\(i\)行第\(j\)个整数表示\(w_{i,j}\) 输出 输出共\(n\)行,每行\(n\)个整数,第\(i\)行第\(j\)个整数表示\(dis(i,j)\)的期望值 样例 样例输入 4 0 1