Convolutional Neural Networks for Visual Recognition 4

Modeling one neuron

下面我们开始介绍神经网络,我们先从最简单的一个神经元的情况开始,一个简单的神经元包括输入,激励函数以及输出。如下图所示:

一个神经元类似一个线性分类器,如果激励函数是sigmoid 函数(σ(x)=1/(1+e?x)),那么σ(∑iwixi+b)相当于是求该输入所对应的输出为1的概率,P(y=1|xi;w),那么该输入所对应的输出为0的概率为 P(y=0|xi;w)=1?P(y=1|xi;w)。在神经网络中,常用的激励函数一个是sigmoid函数,另一个是tanh 函数。他们的曲线如下图所示:

我们可以看到,sigmoid 函数的取值范围在(0,1)之间,而tanh 函数的取值范围在 (-1,1)之间。从图中可以看到,当sigmoid 函数的取值靠近0或者1时,它的梯度接近0,由于梯度在back propagation中有着非常重要的传递作用,因此如果梯度值太小,信息将无法传递。另外还有常见的几种激励函数比如Rectified Linear Unit(RLU), f(x)=max(0,x),这个函数相当于保证所有的输出都大于0,这个函数的优点是它收敛地比sigmoid,tanh函数要快,而且运算代价相对要低。这个函数的一个缺陷是在训练的过程中,可能导致神经元最后处于“休克”状态,基本毫无反应。因为梯度有可能为0,这样的话,信息就无法传递。为了克服这个hard threshold带来的这个问题,所以有一种激励函数称为 Leaky ReLU,f(x)=1{x<0}(αx)+1{x>=0}(x),对于x<0的情况,梯度不再为0,而是一个很小的常数α。有的实验证明用这种激励函数可以取得不错的分类效果,但是性能不是很稳定。还有一类激励函数称为maxout,这类激励函数用一个非线性运算max(wT1x1+b,wT2x2+b)来求得输出,maxout拥有RLU 的优点,而且避免了神经元“休克”的问题,不过maxout的一个缺陷是运算的参数增加了一倍。

我们将几种常见的激励函数归纳如下:

Sigmoid 函数:f(x)=1/(1+e?x))

tanh 函数:f(x)=1?e?2x1+e?2x

RLU 函数: f(x)=max(0,x)

Leak ReLU 函数:f(x)=1{x<0}(αx)+1{x>=0}(x)

maxout 函数:f(x)=max(wT1x1+b,wT2x2+b)

Neural Network architectures

下面我们开始介绍神经网络,一个完整的神经网络包括输入层,隐含层,以及输出层。最常见的一种神经网络就是 fully-connected 型。如下图所示。我们可以看到,上一层的每一个神经元与下一层的每一个神经元都相连,左边的神经网络含有一个隐含层,右边的神经网络含有两个隐含层,当我们计算神经网络的层数时,我们会忽略输入层,所以左边的神经网络是一个两层的(一个隐含层加一个输出层),右边的神经网络是一个三层的(两个隐含层加一个输出层),输出层有的时候可以含有激励函数,也可以不含有激励函数,看网络设计的需求而定。

那么,神经网络的presentation power到底有多大呢,理论上,一个只含一层隐含层的神经网络模型可以表示任何复杂的函数。所以在机器学习领域,还在争论的一个问题

就是有没有必要利用deep神经网络,既然一个隐含层的shallow神经网络已经足够应付所有复杂的函数,deep 神经网络的优势目前看来是一种经验上的观察,虽然在理论上

与shallow神经网络相比没有太大优势。而且在实际使用中,三层的神经网络比两层的性能要好,但是再深一点的神经网络,比如四,五,六层的神经网络性能已经没有什么

提高了,这点与Convoluational 神经网络有点不太一样,在Convoluational 神经网络结构中,deepth 是一个很重要的保证网络性能的指标。

我们在设计神经网络的时候,要根据实际的问题,选择神经网络的结构,层数,隐含层神经元的个数,因为输入层和输出层基本由问题本身决定。一般来说,随着隐含层数的增加,以及隐含层里神经元个数的增加,网络的representation power会越大。我们可以看看如下的示例图。下图表示的是一个二分类问题,红点表示一类,绿点表示另外一类,利用一个两层的神经网络去学习这些数据,我们看到,随着神经元个数的增加,网络的拟合功能越来越强,当N=20时,所有的红点与绿点都完全区分开来了,所以说,神经元越多,网络就能表示越复杂的函数,但是随之而来的另外一个问题就是overfitting,如果一个网络过于专注数据中的噪声,而忽略了数据潜在的联系,就会出现overfitting。如下图所示,当N=20时,网络可以拟合所有的红点,但是却将平面分割地支离破碎,这种情况下,虽然网络的拟合能力很好,但是generalization能力却很差,意味着测试的性能会很糟糕。从这个例子看来,当数据不是很复杂的时候,似乎小的神经网络可以更好的控制overfitting的问题,但是事实上并非如此,我们一般不会用减少神经元个数的方法来控制overfitting,我们会用很多其他的方法来控制(比如 L2 regularization, dropout, input noise),这些会在后面的课程中介绍。

事实上,小规模的神经网络的一个缺点在于训练的难度,因为小的神经网络representation power有限,所以训练的自由度也相对较小,用梯度下降算法训练的时候,有可能陷入局部最小值,小规模的神经网络的局部最小值相对也较少,但是可能会很快收敛到这些局部最小值,这些极值有些会使网络的性能会很好,但是有些可能让网络性能很差,而大规模的神经网络局部最小值会很多,而且这些与实际误差相关的局部最小值会使网络的性能相对稳定。一般来说,小规模的神经网络性能会有很大的起伏,有的时候严重依赖于权值的初始值,而大规模的神经网络性能相对稳定,对权值的初始值依赖较少。

事实上,我们会利用regularization 去控制大规模网络的overfitting问题,下图给出了引入regularization 之后,N=20的神经网络的训练结果:

我们看到,随着regularization的增加,神经网络的分界面越来越平滑。

声明:lecture notes里的图片都来源于该课程的网站,只能用于学习,请勿作其它用途.

如需转载,请说明该课程为引用来源。http://cs231n.stanford.edu/

时间: 2024-08-25 12:59:09

Convolutional Neural Networks for Visual Recognition 4的相关文章

卷积神经网络用于视觉识别Convolutional Neural Networks for Visual Recognition

Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalization Layer Fully-Connected Layer Converting Fully-Connected Layers to Convolutional Layers ConvNet Architectures Layer Patterns Layer Sizing Patterns C

Convolutional Neural Networks for Visual Recognition 2

Linear Classification 在上一讲里,我们介绍了图像分类问题以及一个简单的分类模型K-NN模型,我们已经知道K-NN的模型有几个严重的缺陷,第一就是要保存训练集里的所有样本,这个比较消耗存储空间:第二就是要遍历所有的训练样本,这种逐一比较的方式比较耗时而低效. 现在,我们要介绍一种更加强大的图像分类模型,这个模型会很自然地引申出神经网络和Convolutional Neural Networks(CNN),这个模型有两个重要的组成部分,一个是score function,将原始

Convolutional Neural Networks for Visual Recognition 8

Convolutional Neural Networks (CNNs / ConvNets) 前面做了如此漫长的铺垫,如今终于来到了课程的重点. Convolutional Neural Networks. 简称CNN,与之前介绍的一般的神经网络相似,CNN相同是由能够学习的权值与偏移量构成.每个神经元接收一些输入.做点积运算加上偏移量,然后选择性的通过一些非线性函数.整个网络终于还是表示成一个可导的loss function,网络的起始端是输入图像.网络的终端是每一类的预測值,通过一个ful

Convolutional Neural Networks for Visual Recognition 5

Setting up the data and the model 前面我们介绍了一个神经元的模型,通过一个激励函数将高维的输入域权值的点积转化为一个单一的输出,而神经网络就是将神经元排列到每一层,形成一个网络结构,这种结构与我们之前介绍的线性模型不太一样,因此score function也需要重新定义,神经网络实现了一系列的线性映射与非线性映射,这一讲,我们主要介绍神经网络的数据预处理以及score function的定义. data processing 给定一个训练集,S={xi∈RD|i

Convolutional Neural Networks for Visual Recognition 7

Two Simple Examples softmax classifier 后,我们介绍两个简单的例子,一个是线性分类器,一个是神经网络.由于网上的讲义给出的都是代码,我们这里用公式来进行推导.首先看softmax classifier 的例子.给定输入X∈RN×D,权值W∈RD×K,偏移量b∈R1×K,我们可以得到分类器对每个样本的预测分数:f=XW+b,我们可以用softmax 函数将预测分数转为概率:pi=efi∑jefj,pi 表示样本属于第i类的概率,fi,fj表示线性函数对样本属于

cs231n Convolutional Neural Networks for Visual Recognition 2 SVM softmax

linear classification 上节中简单介绍了图像分类的概念,并且学习了费时费内存但是精度不高的knn法,本节我们将会进一步学习一种更好的方法,以后的章节中会慢慢引入神经网络和convolutional neural network.这种新的算法有两部分组成: 1. 评价函数score function,用于将原始数据映射到分类结果(预测值): 2. 损失函数loss function, 用于定量分析预测值与真实值的相似程度,损失函数越小,预测值越接近真实值. 我们将两者结合,损失

CS231n: Convolutional Neural Networks for Visual Recognition - Spring 2017

喜大普奔!!!!! CS231n 2017新鲜出炉啦!!!!! 课程主页:http://cs231n.stanford.edu/ 有讲义,有教案,有讲座,更重要的是--还有官方授课视频!!!!!意不意外?惊不惊喜?开不开心???!!!

Convolutional Neural Networks for Visual Recognition 6

-###Learning 前面,我们介绍了神经网络的构成,数据的预处理,权值的初始化等等.这一讲,我们将要介绍神经网络参数学习的过程. Gradient Checks 梯度的运算,在理论上是简单的,但是在实际的应用中,却非常容易出错,梯度的运算常见的有如下两种形式: 形式一: df(x)dx=f(x+h)?f(x)h h是一个很小的常数,实际运算的时候,h大概等于1e?5,但我们通常会用下面这种形式计算梯度: 形式二: df(x)dx=f(x+h)?f(x?h)2h 利用这个表达式,需要我们对l

Convolutional Neural Networks for Visual Recognition 3

Gradient Computing 前面我们介绍过分类器模型一般包含两大部分,一部分是score function,将输入的原始数据映射到每一类的score,另外一个重要组成部分是loss function,计算预测值 与实际值之间的误差,具体地,给定一个线性分类函数:f(xi;W)=Wxi,我们定义如下的loss function: L=1N∑i∑j≠yi[max(0,f(xi,W)j?f(xi,W)yi+1)]+αR(W) 我们看到L与参数W有关,所以我们需要找到一个合适的W使得L尽可能小