大数据支持下的网站内容采集策略

本文并不讨论纯SEO问题,而是着眼于百度大数据,对采集内容进行筛选,让内容具有先天的优势,自然而然获得排名。

基本原理:

  假设现在有一个页面,内容已确定,百度给它打分是98分(百分制)。

  如果和该页面处于同一细分类别的页面有10万个,该页面大约排在第2000-3000位。

  如果和该页面处于同一细分类别的页面只有100个,该页面大约排在第2-3位。

  所谓“同一细分类别”,即是指搜索某关键词显示出来的结果数,也可以理解为收录量。也就是说,页面质量一定的情况下,关键词收录量越大,竞争越大,排名越靠后,反之亦然。概括起来就是:物以稀为贵。

  作为任何一个成熟的网站,都应该有自己的关键词库。作为一个主要靠采集发布内容的网站,更应该优先筛选关键词,而不是整站去copy别人的内容。本文所推荐的关键词筛选方案,即是优先收录量少的词。这样的词如何获取?如何知道每一个词的收录量?站长之家词库网,已经给出了答案。从词库网购买所在行业的海量关键词,从中筛选收录量小且指数高的词,再以这些词作为目标去采集内容,将会比较容易获得排名。

时间: 2024-10-17 03:03:38

大数据支持下的网站内容采集策略的相关文章

看大数据时代下的IT架构(1)图片服务器之演进史

        柯南君的公司最近产品即将上线,由于产品业务对图片的需求与日俱增,花样百出,与此同时,在大数据时代,大流量的冲击下,对图片服务器的压力可想而知,那么今天,柯南君结合互联网的相关热文,加上自己的一点实践经验,与君探讨,与君共勉! 一.图片服务器的重要性 当前,不管哪一家网站(包括 电商行业.O2O行业.互联网行业等),不管哪一种渠道 (包括 web端,APP端甚至一些SNS应用),在大数据时代下,在内容为王的前提下,对图片的需求量越来越大,柯南君的公司是一家O2O公司,也不例外,图片

大数据时代下EDM邮件营销的变革

根据研究,今年的EDM邮件营销的邮件发送量比去年增长了63%,许多方法可以为你收集用户数据,这些数据可以帮助企业改善自己在营销中的精准度,相关性和执行力. 最近的一项研究表明,中国800强企业当中超过一半的企业仍然使用过去的经验和直觉进行决策.只有11%的企业用数据来支持这些决定,而“数据”在这些企业中仍是不重要的资源. 目前大部分发送的邮件可以用两个词来诠释,一个是“批量”,另一个是“爆炸”,而在用户那里,他们只感觉到了“炸”——没错,他们在被这一大堆不相关的邮件狂轰滥炸,变得焦头烂额,从而对

R You Ready?——大数据时代下优雅、卓越的统计分析及绘图环境

作者按:本文根据去年11月份CSDN举办的“大数据技术大会”演讲材料整理,最初发表于2012年2月期<程序员>杂志. 1. 历史 R(R Development Core Team, 2011)语言由新西兰奥克兰大学的 Ross Ihaka 和 Robert Gentleman 两人共同发明,其词法和语法分别源自 Scheme 和 S 语言,R 语言一般认为是 S 语言(John Chambers, Bell Labs, 1972)的一种方言.R 是“GNU S”, 一个自由的.有效的.用于统

柯南君:看大数据时代下的IT架构(4)消息队列之RabbitMQ--案例(Helloword起航)

一.回顾 让我们回顾一下,在上几章里都讲了什么?总结如下: <柯南君:看大数据时代下的IT架构(1)业界消息队列对比> <柯南君:看大数据时代下的IT架构(2)消息队列之RabbitMQ-基础概念详细介绍> <柯南君:看大数据时代下的IT架构(3)消息队列之RabbitMQ-安装.配置与监控> 二.起航 本章节,柯南君将从几个层面,用官网例子讲解一下RabbitMQ的实操经典程序案例,让大家重新回到经典"Hello world!"(The simpl

CSDN专访:大数据时代下的商业存储

原文地址:http://www.csdn.net/article/2014-06-03/2820044-cloud-emc-hadoop 摘要:EMC公司作为全球信息存储及管理产品方面的领先公司,不久前,EMC宣布收购DSSD加强和巩固了其在行业内的领导地位,日前我们有幸采访到EMC中国的张安站,他就大数据.商业存储.Spark等给大家分享了自己的看法. 谈到大数据,张安站认为大数据本质上是两个根本性的问题,一个是数据很大,如何存储?另外一个是数据很大,如何分析?第一个问题,对于存储厂商来说,就

企业大数据平台下数仓建设思路

免费开通大数据服务:https://www.aliyun.com/product/odps 介然(李金波),阿里云高级技术专家,现任阿里云大数据数仓解决方案总架构师.8年以上互联网数据仓库经历,对系统架构.数据架构拥有丰富的实战经验,曾经数据魔方.淘宝指数的数据架构设计专家. 与阿里云大数据数仓结缘 介然之前在一家软件公司给企业客户做软件开发和数仓开发实施,数仓开发和实施都是基于传统的基础架构.2008年加入阿里进入淘宝数据平台部后,他开始接触分布式计算平台Hadoop. 初始时在Hadoop平

柯南君:看大数据时代下的IT架构(2)消息队列之RabbitMQ-基础概念详细介绍

柯南君上一章<柯南君:看大数据时代下的IT架构(1)业界消息队列对比 >中,粗略的讲了一下,目前消息队列的几种常见产品的优劣对比,接下来的几章节会分别详细阐述,本章介绍RabbitMQ,好吧,废话少说,正式开始: 一.基础概念详细介绍 1.引言 你是否遇到过两个(多个)系统间需要通过定时任务来同步某些数据?你是否在为异构系统的不同进程间相互调用.通讯的问题而苦恼.挣扎?如果是,那么恭喜你,消息服务让你可以很轻松地解决这些问题. 消息服务擅长于解决多系统.异构系统间的数据交换(消息通知/通讯)问

柯南君:看大数据时代下的IT架构(5)消息队列之RabbitMQ--案例(Work Queues起航)

一.回顾 让我们回顾一下,在上几章里都讲了什么?总结如下: <柯南君:看大数据时代下的IT架构(1)业界消息队列对比> <柯南君:看大数据时代下的IT架构(2)消息队列之RabbitMQ-基础概念详细介绍> <柯南君:看大数据时代下的IT架构(3)消息队列之RabbitMQ-安装.配置与监控> <柯南君:看大数据时代下的IT架构(4)消息队列之RabbitMQ--案例(Helloword起航)> 二.Work Queues(using the Java Cl

探析大数据需求下的分布式数据库

一.前言 大数据技术从诞生到现在,已经经历了十几个年头.市场上早已不断有公司或机构,给广大金融从业者"洗脑"大数据未来的美好前景与趋势.随着用户对大数据理念与技术的不断深入了解,人们已经开始从理论探索转向对场景落地的寻找,让大数据在企业中落地并开花结果. 从大数据的管理和应用方向集中在两个领域.第一,大数据分析相关,针对海量数据的挖掘.复杂的分析计算:第二,在线数据操作,包括传统交易型操作以及海量数据的实时访问.大数据高并发查询操作.用户根据业务场景以及对数据处理结果的期望选择不同的大