LightOJ - 1336 - Sigma Function(质数分解)

链接:

https://vjudge.net/problem/LightOJ-1336

题意:

Sigma function is an interesting function in Number Theory. It is denoted by the Greek letter Sigma (σ). This function actually denotes the sum of all divisors of a number. For example σ(24) = 1+2+3+4+6+8+12+24=60. Sigma of small numbers is easy to find but for large numbers it is very difficult to find in a straight forward way. But mathematicians have discovered a formula to find sigma. If the prime power decomposition of an integer is

Then we can write,

For some n the value of σ(n) is odd and for others it is even. Given a value n, you will have to find how many integers from 1 to n have even value of σ.

思路:

考虑质数的约数和可以看作\((1+p_1^1+p_1^2+...+p_1^{k1})*(1+p_2^1+p_2^2+...+p_2^{k2})...\)
考虑和为奇数情况。
存在素因子2时,(1+2^n)为奇数,则和为奇数。
其他素因子为奇数,奇数乘奇数为奇数,1+偶数为奇数,偶数乘奇数为偶数,则只有素因子的指数为偶数时满足和为奇数。
由此得到其他数都为平方数。或者时平方数*2

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
#include<math.h>
#include<vector>
#include<map>

using namespace std;
typedef long long LL;
const int INF = 1e9;

const int MAXN = 1e6+10;
const int MOD = 1e9+7;

LL n;

int main()
{
    int t, cnt = 0;
    scanf("%d", &t);
    while(t--)
    {
        printf("Case %d:", ++cnt);
        scanf("%lld", &n);
        LL tmp = n;
        tmp -= (LL)sqrt(n);
        tmp -= (LL)sqrt(n/2);
        printf(" %lld\n", tmp);
    }

    return 0;
}

原文地址:https://www.cnblogs.com/YDDDD/p/11846273.html

时间: 2024-10-24 19:26:30

LightOJ - 1336 - Sigma Function(质数分解)的相关文章

LightOJ 1336 Sigma Function

/* LightOJ 1336 Sigma Function http://lightoj.com/login_main.php?url=volume_showproblem.php?problem=1336 数论 奇偶性 题目求f(n)为偶数的个数 我们发现如果f(n)为奇数,则n为x^2,2*x^2,2^x三种形式, 因为2^x中已经包含剩下两种, 所以只需求x^2和2*x^2的个数即可求得答案. * 打了半天表发现没用233333 * */ #include <cstdio> #incl

LightOJ 1336 Sigma Function(数论 整数拆分推论)

--->题意:给一个函数的定义,F(n)代表n的所有约数之和,并且给出了整数拆分公式以及F(n)的计算方法,对于一个给出的N让我们求1 - N之间有多少个数满足F(x)为偶数的情况,输出这个数. --->分析:来考虑F(x)为奇数的情况,给据题目中给我们的公式,,如果F(x)为奇数,那么这个多项式里面的任何一项都必须是奇数,可以知道p = 2时,        p^e - 1肯定是奇数,如果p != 2,当且仅当e为偶数的时候,此项为奇数,证明如下: 原式变形为[ p^(e+1) -p + (

LightOJ 13361336 - Sigma Function (找规律 + 唯一分解定理)

http://lightoj.com/volume_showproblem.php?problem=1336 Sigma Function Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit Status Practice LightOJ 1336 Description Sigma function is an interesting function in Number Theor

light oj 1336 sigma function

常用的化简方法(高中就常用了):     p^(e+1)-1/p-1=             [ p^(e+1) -p + (p-1) ]/ (p-1) = p*(p^e-1)/(p-1) + 1   (也可以直接分解p^e-1) 常用的思路:反面验证  比如本题,求偶数(试探后发现不太好求),则推出奇数条件 再看本题.要想让σ(n)为偶数,只要有一项为偶数即可, 化简变为,观察这个式子,pi都是素数,除2以外都是奇数,所以式子奇偶决定于ei,若ei为奇数,就相当于奇数个奇数(若pi不是2,那

【LightOJ1336】Sigma Function(数论)

[LightOJ1336]Sigma Function(数论) 题面 Vjudge 求和运算是一种有趣的操作,它来源于古希腊字母σ,现在我们来求一个数字的所有因子之和.例如σ(24)=1+2+3+4+6+8+12+24=60.对于小的数字求和是非常的简单,但是对于大数字求和就比较困难了.现在给你一个n,你需要求出有多少个数字的σ是偶数. 注:一个数字的σ指这个数的所有因子之和 题解 现在观察一下数的因子和的奇偶性 如果这个数是一个奇数 那么,它的因子一定成对存在 且每一对的和都是偶数 但是,如果

Sigma Function

做完这道题,我明白了人生的一个巨大道理,那就是: 其他题研究两下,做出来几百行.数论码字前研究半天,做出来十几二十行.做完特别没有成就感... 首先说下这题题意:首先,定义一个函数f[n],即为他所有因子和,他自带一个叼叼的公式 ,然后问对一个给定的n,从1到n,他们的f[n]中有几个是偶数...pi 是n的素数因子,ei 是对应素因子的个数.. 我当时的思路历程: 首先比较简单,如果这k个式子全是奇数,那么f[n]是奇数,只要出现一个偶数,那么结果便是偶数,所以答案应该非常接近n,n大小在1万

HDU 4497 GCD and LCM (数学,质数分解)

题意:给定G,L,分别是三个数最大公因数和最小公倍数,问你能找出多少对. 析:数学题,当时就想错了,就没找出规律,思路是这样的. 首先G和L有公因数,就是G,所以就可以用L除以G,然后只要找从1-(n=L/G),即可,那么可以进行质因数分解,假设: n = p1^t1*p2^t2*p3^t3;那么x, y, z,除以G后一定是这样的. x = p1^i1*p2^i2*p3^i3; y = p1^j1*p2^j2*p3^j3; z = p1^k1*p2^k2*p3^k3; 那么我们可以知道,i1,

kuangbin 带你飞 数学基础

模版整理: 晒素数 void init() { cas = 0; for (int i = 0 ; i < MAXD ; i++) is_prime[i] = true; is_prime[0] = is_prime[1] = false; for (int i = 2 ; i < MAXD ; i++) { if (is_prime[i]) { prime[cas++] = i; for (int j = i + i ; j < MAXD ; j += i) is_prime[j] =

light_oj 1336 约数和奇偶性

light_oj 1336  约数和奇偶性 D - Sigma Function Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu Submit Status Practice LightOJ 1336 Description Sigma function is an interesting function in Number Theory. It is denoted by the Greek