Python 十大装 B 语法解析

Python 是一种代表简单思想的语言,其语法相对简单,很容易上手。不过,如果就此小视 Python 语法的精妙和深邃,那就大错特错了。本文精心筛选了最能展现 Python 语法之精妙的十个知识点,并附上详细的实例代码。如能在实战中融会贯通、灵活使用,必将使代码更为精炼、高效,同时也会极大提升代码B格,使之看上去更老练,读起来更优雅。

一、for - else

什么?不是 if 和 else 才是原配吗?No,你可能不知道,else 是个脚踩两只船的家伙,for 和 else 也是一对,而且是合法的。十大装B语法,for-else 绝对算得上南无湾!不信,请看:

>>> for i in [1,2,3,4]:

print(i)

else:

print(i, ‘我是else‘)

4 我是else

如果在 for 和 else 之间(循环体内)有第三者 if 插足,也不会影响 for 和 else 的关系。因为 for 的级别比 if 高,else 又是一个攀附权贵的家伙,根本不在乎是否有 if,以及是否执行了满足 if 条件的语句。else 的眼里只有 for,只要 for 顺利执行完毕,else 就会屁颠儿屁颠儿地跑一遍:

>>> for i in [1,2,3,4]:

if i > 2:

print(i)

else:

print(i, ‘我是else‘)

4 我是else

那么,如何拆散 for 和 else 这对冤家呢?只有当 for 循环被 break 语句中断之后,才会跳过 else 语句:

>>> for i in [1,2,3,4]:

if i>2:

print(i)

break

else:

print(i, ‘我是else‘)

3

二、一颗星()和两颗星(*)

有没有发现,星(*)真是一个神奇的符号!想一想,没有它,C语言还有啥好玩的?同样,因为有它,Python 才会如此的仪态万方、风姿绰约、楚楚动人!Python 函数支持默认参数和可变参数,一颗星表示不限数量的单值参数,两颗星表示不限数量的键值对参数。

我们还是举例说明吧:设计一个函数,返回多个输入数值的和。我们固然可以把这些输入数值做成一个list传给函数,但这个方法,远没有使用一颗星的可变参数来得优雅:

>>> def multi_sum(*args):

s = 0

for item in args:

s += item

return s

>>> multi_sum(3,4,5)

12

Python 函数允许同时全

部或部分使用固定参数、默认参数、单值(一颗星)可变参数、键值对(两颗星)可变参数,使用时必须按照前述顺序书写。

>>> def do_something(name, age, gender=‘男‘, *args, **kwds):

print(‘姓名:%s,年龄:%d,性别:%s‘%(name, age, gender))

print(args)

print(kwds)

>>> do_something(‘xufive‘, 50, ‘男‘, 175, 75, math=99, english=90)

姓名:xufive,年龄:50,性别:男

(175, 75)

{‘math‘: 99, ‘english‘: 90}

三、三元表达式

熟悉 C/C++ 的程序员,初上手 python 时,一定会怀念经典的三元操作符,因为想表达同样的思想,用python 写起来似乎更麻烦。比如:

>>> y = 5

>>> if y < 0:

print(‘y是一个负数‘)

else:

print(‘y是一个非负数‘)

y是一个非负数

其实,python 是支持三元表达式的,只是稍微怪异了一点,类似于我们山东人讲话。比如,山东人最喜欢用倒装句:打球去吧,要是不下雨的话;下雨,咱就去自习室。翻译成三元表达式就是:

打球去吧 if 不下雨 else 去自习室

来看看三元表达式具体的使用:

>>> y = 5

>>> print(‘y是一个负数‘ if y < 0 else ‘y是一个非负数‘)

y是一个非负数

python 的三元表达式也可以用来赋值:

>>> y = 5

>>> x = -1 if y < 0 else 1

>>> x

1

四、with - as

with 这个词儿,英文里面不难翻译,但在 Python 语法中怎么翻译,我还真想不出来,大致上是一种上下文管理协议。作为初学者,不用关注 with 的各种方法以及机制如何,只需要了解它的应用场景就可以了。with 语句适合一些事先需要准备,事后需要处理的任务,比如,文件操作,需要先打开文件,操作完成后需要关闭文件。如果不使用with,文件操作通常得这样:

fp = open(r"D:\CSDN\Column\temp\mpmap.py", ‘r‘)

try:

contents = fp.readlines()

finally:

fp.close()

如果使用 with - as,那就优雅多了:

>>> with open(r"D:\CSDN\Column\temp\mpmap.py", ‘r‘) as fp:

contents = fp.readlines()

五、列表推导式

在各种稀奇古怪的语法中,列表推导式的使用频率应该时最高的,对于代码的简化效果也非常明显。比如,求列表各元素的平方,通常应该这样写(当然也有其他写法,比如使用map函数):

>>> a = [1, 2, 3, 4, 5]

>>> result = list()

>>> for i in a:

result.append(i*i)

>>> result

[1, 4, 9, 16, 25]

如果使用列表推导式,看起来就舒服多了:

>>> a = [1, 2, 3, 4, 5]

>>> result = [i*i for i in a]

>>> result

[1, 4, 9, 16, 25]

事实上,推导式不仅支持列表,也支持字典、集合、元组等对象。有兴趣的话,可以自行研究。我有一篇博文《一行 Python 代码能实现什么丧心病狂的功能?》,里面的例子,都是列表推导式实现的。

六、列表索引的各种骚操作

Python 引入负整数作为数组的索引,这绝对是喜大普奔之举。想想看,在C/C++中,想要数组最后一个元素,得先取得数组长度,减一之后做索引,严重影响了思维的连贯性。Python语言之所以获得成功,我个人觉得,在诸多因素里面,列表操作的便捷性是不容忽视的一点。请看:

>>> a = [0, 1, 2, 3, 4, 5]

>>> a[2:4]

[2, 3]

>>> a[3:]

[3, 4, 5]

>>> a[1:]

[1, 2, 3, 4, 5]

>>> a[:]

[0, 1, 2, 3, 4, 5]

>>> a[::2]

[0, 2, 4]

>>> a[1::2]

[1, 3, 5]

>>> a[-1]

5

>>> a[-2]

4

>>> a[1:-1]

[1, 2, 3, 4]

>>> a[::-1]

[5, 4, 3, 2, 1, 0]

如果说,这些你都很熟悉,也经常用,那么接下来这个用法,你一定会感觉很神奇:

>>> a = [0, 1, 2, 3, 4, 5]

>>> b = [‘a‘, ‘b‘]

>>> a[2:2] = b

>>> a

[0, 1, ‘a‘, ‘b‘, 2, 3, 4, 5]

>>> a[3:6] = b

>>> a

[0, 1, ‘a‘, ‘a‘, ‘b‘, 4, 5]

七、lambda函数

lambda 听起来很高大上,其实就是匿名函数(了解js的同学一定很熟悉匿名函数)。匿名函数的应用场景是什么呢?就是仅在定义匿名函数的地方使用这个函数,其他地方用不到,所以就不需要给它取个阿猫阿狗之类的名字了。下面是一个求和的匿名函数,输入参数有两个,x和y,函数体就是x+y,省略了return关键字。

>>> lambda x,y: x+y

<function <lambda> at 0x000001B2DE5BD598>

>>> (lambda x,y: x+y)(3,4) # 因为匿名函数没有名字,使用的时候要用括号把它包起来

匿名函数一般不会单独使用,而是配合其他方法,为其他方法提供内置的算法或判断条件。比如,使用排序函数sorted对多维数组或者字典排序时,就可以指定排序规则。

>>> a = [{‘name‘:‘B‘, ‘age‘:50}, {‘name‘:‘A‘, ‘age‘:30}, {‘name‘:‘C‘, ‘age‘:40}]

>>> sorted(a, key=lambda x:x[‘name‘]) # 按姓名排序

[{‘name‘: ‘A‘, ‘age‘: 30}, {‘name‘: ‘B‘, ‘age‘: 50}, {‘name‘: ‘C‘, ‘age‘: 40}]

>>> sorted(a, key=lambda x:x[‘age‘]) # 按年龄排序

[{‘name‘: ‘A‘, ‘age‘: 30}, {‘name‘: ‘C‘, ‘age‘: 40}, {‘name‘: ‘B‘, ‘age‘: 50}]

再举一个数组元素求平方的例子,这次用map函数:

>>> a = [1,2,3]

>>> for item in map(lambda x:x*x, a):

print(item, end=‘, ‘)

1, 4, 9,

八、yield 以及生成器和迭代器

yield 这词儿,真不好翻译,翻词典也没用。我干脆就读作“一爱得”,算是外来词汇吧。要理解 yield,得先了解 generator(生成器)。要了解generator,得先知道 iterator(迭代器)。哈哈哈,绕晕了吧?算了,我还是说白话吧。

话说py2时代,range()返回的是list,但如果range(10000000)的话,会消耗大量内存资源,所以,py2又搞了一个xrange()来解决这个问题。py3则只保留了xrange(),但写作range()。xrange()返回的就是一个迭代器,它可以像list那样被遍历,但又不占用多少内存。generator(生成器)是一种特殊的迭代器,只能被遍历一次,遍历结束,就自动消失了。总之,不管是迭代器还是生成器,都是为了避免使用list,从而节省内存。那么,如何得到迭代器和生成器呢?

pyrhon内置了迭代函数 iter,用于生成迭代器,用法如下:

>>> a = [1,2,3]

>>> a_iter = iter(a)

>>> a_iter

<list_iterator object at 0x000001B2DE434BA8>

>>> for i in a_iter:

print(i, end=‘, ‘)

1, 2, 3,

yield 则是用于构造生成器的。比如,我们要写一个函数,返回从0到某正整数的所有整数的平方,传统的代码写法是这样的:

>>> def get_square(n):

result = list()

for i in range(n):

result.append(pow(i,2))

return result

>>> print(get_square(5))

[0, 1, 4, 9, 16]

但是如果计算1亿以内的所有整数的平方,这个函数的内存开销会非常大,这是 yield 就可以大显身手了:

>>> def get_square(n):

for i in range(n):

yield(pow(i,2))

>>> a = get_square(5)

>>> a

<generator object get_square at 0x000001B2DE5CACF0>

>>> for i in a:

print(i, end=‘, ‘)

0, 1, 4, 9, 16,

如果再次遍历,则不会有输出了。

九、装饰器

刚弄明白迭代器和生成器,这又来个装饰器,Python 咋这么多器呢?的确,Python 为我们提供了很多的武器,装饰器就是最有力的武器之一。装饰器很强大,我在这里尝试从需求的角度,用一个简单的例子,说明装饰器的使用方法和制造工艺。

假如我们需要定义很多个函数,在每个外汇返佣函数运行的时候要显示这个函数的运行时长,解决方案有很多。比如,可以在调用每个函数之前读一下时间戳,每个函数运行结束后再读一下时间戳,求差即可;也可以在每个函数体内的开始和结束位置上读时间戳,最后求差。不过,这两个方法,都没有使用装饰器那么简单、优雅。下面的例子,很好地展示了这一点。

>>> import time

>>> def timer(func):

def wrapper(*args,**kwds):

t0 = time.time()

func(*args,**kwds)

t1 = time.time()

print(‘耗时%0.3f‘%(t1-t0,))

return wrapper

>>> @timer

def do_something(delay):

print(‘函数do_something开始‘)

time.sleep(delay)

print(‘函数do_something结束‘)

>>> do_something(3)

函数do_something开始

函数do_something结束

耗时3.077

timer() 是我们定义的装饰器函数,使用@把它附加在任何一个函数(比如do_something)定义之前,就等于把新定义的函数,当成了装饰器函数的输入参数。运行 do_something() 函数,可以理解为执行了timer(do_something) 。细节虽然复杂,不过这么理解不会偏差太大,且更易于把握装饰器的制造和使用。

十、巧用断言assert

所谓断言,就是声明表达式的布尔值必须为真的判定,否则将触发 AssertionError 异常。严格来讲,assert是调试手段,不宜使用在生产环境中,但这不影响我们用断言来实现一些特定功能,比如,输入参数的格式、类型验证等。

>>> def i_want_to_sleep(delay):

assert(isinstance(delay, (int,float))), ‘函数参数必须为整数或浮点数‘

print(‘开始睡觉‘)

time.sleep(delay)

print(‘睡醒了‘)

>>> i_want_to_sleep(1.1)

开始睡觉

睡醒了

>>> i_want_to_sleep(2)

开始睡觉

睡醒了

>>> i_want_to_sleep(‘2‘)

Traceback (most recent call last):

File "<pyshell#247>", line 1, in <module>

i_want_to_sleep(‘2‘)

File "<pyshell#244>", line 2, in i_want_to_sleep

assert(isinstance(delay, (int,float))), ‘函数参数必须为整数或浮点数‘

AssertionError: 函数参数必须为整数或浮点数

原文链接:https://blog.csdn.net/csdnnews/article/details/102889897

原文地址:https://www.cnblogs.com/benming/p/11858244.html

时间: 2024-11-07 04:58:01

Python 十大装 B 语法解析的相关文章

Python十大语法

Python 是一种代表简单思想的语言,其语法相对简单,很容易上手.不过,如果就此小视 Python 语法的精妙和深邃,那就大错特错了.本文精心筛选了最能展现 Python 语法之精妙的十个知识点,并附上详细的实例代码.如能在实战中融会贯通.灵活使用,必将使代码更为精炼.高效,同时也会极大提升代码B格,使之看上去更老练,读起来更优雅. 1. for - else 什么?不是 if 和 else 才是原配吗?No,你可能不知道,else 是个脚踩两只船的家伙,for 和 else 也是一对,而且是

Python 十大语法

前言 Python 是一种代表简单思想的语言,其语法相对简单,很容易上手.不过,如果就此小视 Python 语法的精妙和深邃,那就大错特错了.本文精心筛选了最能展现 Python 语法之精妙的十个知识点,并附上详细的实例代码.如能在实战中融会贯通.灵活使用,必将使代码更为精炼.高效,同时也会极大提升代码B格,使之看上去更老练,读起来更优雅. for - else 什么?不是 if 和 else 才是原配吗?No,你可能不知道,else 是个脚踩两只船的家伙,for 和 else 也是一对,而且是

中国十大成功商业模式解析

转:.. [腾讯] 从产业价值链定位来看,抓住互联网对人们生活方式的改变形成新的业态的机遇,通过建立中国规模最大的网络社区“为用户提供一站式在线生活服务”,通过影响人们的生活方式嵌入主营业务. 盈利模式:在一个巨大的便捷沟通平台上影响和改变数以亿计网民的沟通方式和生活习惯,并借助这种影响嵌入各类增值服务. 创新性:借互联网对人们生活方式改变之力切入市场,通过免费的方式提供基础服务而将增值服务作为价值输出和盈利来源的实现方式. [阿里巴巴] 从产业价值链定位来看,抓住互联网与企业营销相结合的机遇,

2014年中国互联网的十大装逼词汇

装逼的词年年有,本年格外多.去年此时一时鼓起写了一篇"2013年我国互联网10大装逼词汇".其中"互联网思想"."推翻"."逼格"."用户痛点"等词汇的当选引发了激烈的共鸣,本年哪些装逼词汇会当选呢? 和去年相同,2014年做出来的评选仅代表我和我的小伙伴们的自己观点,不做威望引证源头.您认同就共享到微博或许微信,不认同也共享到兄弟圈做吐槽之用. 大数据 假如2013年"互联网思想"是荣

python 十大经典排序算法

python 十大经典排序算法 排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存.常见的内部排序算法有:插入排序.希尔排序.选择排序.冒泡排序.归并排序.快速排序.堆排序.基数排序等.用一张图概括: 关于时间复杂度: 平方阶 (O(n2)) 排序 各类简单排序:直接插入.直接选择和冒泡排序. 线性对数阶 (O(nlog2n)) 排序 快速排序.堆排序和归并排序. O(n1+§)) 排序,§

Python十大经典排序算法

现在很多的事情都可以用算法来解决,在编程上,算法有着很重要的地位,将算法用函数封装起来,使程序能更好的调用,不需要反复编写. Python十大经典算法: 一.插入排序 1.算法思想 从第二个元素开始和前面的元素进行比较,如果前面的元素比当前元素大,则将前面元素 后移,当前元素依次往前,直到找到比它小或等于它的元素插入在其后面, 然后选择第三个元素,重复上述操作,进行插入,依次选择到最后一个元素,插入后即完成所有排序. 2.代码实现 1 def insertion_sort(arr): 2 #插入

学习游戏要学习编程语言吗?十大主流编程语言解析

计算机的发展,促使了一个新的职业的出现,程序员是近些年出现的并且得到了广泛关注的一个职业,相信这也是很多莘莘学子的职业梦想.但程序员也有很多种,并不是每一个程序员能够精通所有的编程语言.所谓术业有专攻,如果将来志在编程世界的网友就要注意了,今天给大家推荐一下2014年最流行的编程语言,他们可以说是未来程序员们生存的工具. 1.JavaScript JavaScript在Web应用上有着非常大的需求,JavaScript主要用于实现为Web浏览器,以提供增强的用户界面和动态网站. 直到google

常用的十大Python开发工具

据权威机构统计,Python人才需求量每日高达5000+,但目前市场上会 Python 的程序员少之又少, 竞争小,很容易快速高薪就业.可能你并不太了解常用的十大Python开发工具都有哪些,现在告诉你. 1.Micro Python Micro Python基于ANSI C,语法跟Pyton 3基本一致,拥有自家的解析器.编译器.虚拟机和类库等.目前支持基于32-bit的ARM处理器,比如说STM32F405. 借助它,用户完全可以通过Python脚本语言实现硬件底层的访问和控制,如控制LED

Atitit.sql&#160;ast&#160;表达式&#160;语法树&#160;语法&#160;解析原理与实现&#160;java&#160;php&#160;c#.net&#160;js&#160;python

Atitit.sql ast 表达式 语法树 语法 解析原理与实现 java php c#.net js python 1.1. Sql语法树 ast 如下图锁死1 2. SQL语句解析的思路和过程3 2.1. lexer作为一个工具,完成了对SQL字符串的切割,将语句转化成一个tokens数组.3 2.2. Parser完成了SQL解析的后序部分:使用一个lexer对象作为工具,切出tokens,然后解析语义,绑定相关的系统接口.3 2.3. 关系数据和XML数据库下其抽象语法树分别为: 如图