pyTorch入门

人工智能:多领域交叉科学技术

机器智能:计算机智能决策算法

深度学习:高效的机器学习算法 (是机器学习的子集)

X(Input) --> model(f(x)) --> Y (决策变量)

机器学习的五个模块:

1. 数据(进行采集、清洗、整理、划分、预处理、增强等)

2..模型(根据任务的不同选择不同的模型)

3.损失函数(loss指示输出和标签之间的差异,模型好与坏的评价标准)

4.优化器(优化模型中的可学习参数,优化参数使模型的表现越来越好)

5.迭代训练 ,反复迭代更新的过程中,监控训练效果,根据训练效果调整训练策略,根据loss曲线等。

My Learning Experience: 林轩田 《机器学习基石》《西瓜书》《统计学习》《花书》-论文- PyTorch   ,没有办法实现自己的idea, pyTorch比较适合新手入门。

PyTorch日益增长的发展速度与深度学习时代的迫切需求

与众不同的课程设计,深入模型训练各步骤,分析学习PyTorch

学习pyTorch的方法:

首先简历课程知识框架,通过所给资料搭建课程框架,熟悉课程知识点分布;

突破重点,找出难点;

理论与代码相结合,通过作业来巩固知识;

总结与分享。

原文地址:https://www.cnblogs.com/chenglansky/p/11991909.html

时间: 2024-10-22 03:25:44

pyTorch入门的相关文章

深度学习框架pytorch入门与实践(一):torch的基本使用

主要内容: 1.tensor的定义 2.tensor与numpy的相互转换 3.tensor使用cuda加速 4.tensor封装成Variable后的使用 # -*- coding: utf-8 -*- """ Created on Thu Aug 8 16:40:47 2019 pytorch快速入门教程 参考书籍:<深度学习框架pytorch:入门与实践> @author: zhaoqidong """ import torch

萌新深度学习与Pytorch入门记录(一):Win10下环境安装

深度学习从入门到入土,安装软件及配置环境踩了不少坑,过程中参考了多处博主给的解决方法,遂整合一下自己的采坑记录. (若遇到不一样的错误,请参考其他博主答案解决) 笔者电脑系统为win10系统,在此环境下安装 Pycharm 5.0.3 Anaconda  3 Python 3.6.9 cuda 10.1 Pytorch 1.3.1 1.安装Pycharm 5.0.3,顺带下载地址: PyCharm5.0(32/64)位下载地址: 链接:https://pan.baidu.com/s/1eTYTy

Pytorch入门实战一:LeNet神经网络实现 MNIST手写数字识别

记得第一次接触手写数字识别数据集还在学习TensorFlow,各种sess.run(),头都绕晕了.自从接触pytorch以来,一直想写点什么.曾经在2017年5月,Andrej Karpathy发表的一片Twitter,调侃道:l've been using PyTorch a few months now, l've never felt better, l've more energy.My skin is clearer. My eye sight has improved.确实,使用p

Pytorch入门实战二:LeNet、AleNet、VGG、GoogLeNet、ResNet模型详解

LeNet 1998年,LeCun提出了第一个真正的卷积神经网络,也是整个神经网络的开山之作,称为LeNet,现在主要指的是LeNet5或LeNet-5,如图1.1所示.它的主要特征是将卷积层和下采样层相结合作为网络的基本机构,如果不计输入层,该模型共7层,包括2个卷积层,2个下采样层,3个全连接层. 图1.1 注:由于在接入全连接层时,要将池化层的输出转换成全连接层需要的维度,因此,必须清晰的知道全连接层前feature map的大小.卷积层与池化层输出的图像大小,其计算如图1.2所示. 图1

[PyTorch入门之60分钟入门闪击战]之训练分类器

训练分类器 目前为止,你已经知道如何定义神经网络.计算损失和更新网络的权重.现在你可能在想,那数据呢? What about data? 通常,当你需要处理图像.文本.音频或者视频数据时,你可以使用标准Python包来将数据导入到numpy 数组中.然后再将数组转换成torch.Tensor. 对于图像,可用的包有:Pillow.OpenCV 对于音频,可用的包有:scipy和librosa 对于文本,无论是基于原始的Python或Cython的加载,或是NLTK和SpaCy都是可以的. 对于视

[PyTorch入门之60分钟入门闪击战]之神经网络

神经网络 来源于这里. 神经网络可以使用torch.nn包构建. 现在你对autograd已经有了初步的了解,nn依赖于autograd定义模型并区分它们.一个nn.Module包含了层(layers),和一个用来返回output的方法forward(input). 以下面这个区分数字图像的网络为例: 上图是一个简单的前馈网络.它接受输入,一个层接一层地通过几层网络,最后给出输出. 典型的神经网络训练程序如下: 定义具有一些可学习参数(或权重)的神经网络 迭代输入的数据集 通过网络处理输入 计算

pytorch 入门指南

两类深度学习框架的优缺点 动态图(PyTorch) 计算图的进行与代码的运行时同时进行的. 静态图(Tensorflow <2.0) 自建命名体系 自建时序控制 难以介入 使用深度学习框架的优点 GPU 加速 (cuda) 自动求导 常用网络层的API PyTorch 的特点 支持 GPU 动态神经网络 Python 优先 命令式体验 轻松扩展 1.Pytorch简介 Pytorch是Facebook 的 AI 研究团队发布了一个基于 Python的科学计算包,旨在服务两类场合: 替代numpy

PyTorch入门学习(二):Autogard之自动求梯度

autograd包是PyTorch中神经网络的核心部分,简单学习一下. autograd提供了所有张量操作的自动求微分功能. 它的灵活性体现在可以通过代码的运行来决定反向传播的过程, 这样就使得每一次的迭代都可以是不一样的. Variable类 autograd.Variable是这个包中的核心类. 它封装了Tensor,并且支持了几乎所有Tensor的操作. 一旦你完成张量计算之后就可以调用.backward()函数,它会帮你把所有的梯度计算好. 通过Variable的.data属性可以获取到

Pytorch入门教程

记得刚开始学TensorFlow的时候,那给我折磨的呀,我一直在想这个TensorFlow官方为什么搭建个网络还要画什么静态图呢,把简单的事情弄得麻烦死了,直到这几天我开始接触Pytorch,发现Pytorch是就是不用搭建静态图的Tensorflow版本,就想在用numpy一样,并且封装了很多深度学习高级API,numpy数据和Tensor数据相互转换不用搭建会话了,只需要一个转换函数,搭建起了numpy和TensorFlow爱的桥梁. Pytorch自17年推出以来,一度有赶超TensorF