poj 3128 Leonardo's Notebook(置换的幂)

http://poj.org/problem?id=3128

大致题意:输入一串含26个大写字母的字符串,可以把它看做一个置换,判断这个置换是否是某个置换的平方。

思路:详解可参考置换群快速幂运算
研究与探讨

可以先正着考虑一个置换的平方出现什么情况。对于置换中的循环,若其长度为偶数,平方以后一定分成了两个长度相等的循环,若长度是奇数,平方以后仍是一个循环,长度不变。因此,考虑当前置换,若某个循环的长度为偶数,那么它一定是原始置换平方得来的,而且等长度的循环一定有偶数个。对于长度为奇数的循环,它可能是原始置换某个长度为偶数的循环平方得到的,也可能是长度为奇数的循环平方得来的。所以,判定当前置换是否是某个置换的平方等价于判断当前置换
长度为偶数的循环个数是否为偶数个。

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <set>
#include <map>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#define LL long long
#define _LL __int64
#define eps 1e-8
#define PI acos(-1.0)
using namespace std;

const int maxn = 1010;
const int INF = 0x3f3f3f3f;

int a[30];
char s[30];
int vis[30];
int num[30];

bool solve()
{
	memset(vis,0,sizeof(vis));
	memset(num,0,sizeof(num));
	int i;

	while(1)
	{
		for(i = 1; i <= 26; i++)
			if(!vis[a[i]])
				break;
		if(i > 26)
			break;
		int cnt = 1;
		vis[i] = 1;  //不要忘记标记i
		int t = a[i];
		vis[t] = 1;
		while(t != i)
		{
			vis[t] = 1;
			t = a[t];
			cnt++;
		}
		if(cnt % 2 == 0) //是偶数,对应循环个数就加1
			num[cnt]++;
	}
	int flag = 1;
	for(int i = 2; i <= 26; i += 2)
	{
		if(num[i] % 2 != 0)
		{
			flag = 0;
			break;
		}
	}
	if(flag == 1)
		return true;
	return false;
}

int main()
{
	int test;
	scanf("%d",&test);
	while(test--)
	{
		scanf("%s",s+1);
		for(int i = 1; i <= 26; i++)
			a[i] = s[i]-'A' + 1;

		if(solve())
			printf("Yes\n");
		else printf("No\n");
	}
	return 0;
}

poj 3128 Leonardo's Notebook(置换的幂)

时间: 2024-10-21 03:37:04

poj 3128 Leonardo's Notebook(置换的幂)的相关文章

poj 3128 Leonardo&#39;s Notebook (置换群的整幂运算)

题意:给你一个置换P,问是否存在一个置换M,使M^2=P 思路:资料参考 <置换群快速幂运算研究与探讨> https://wenku.baidu.com/view/0bff6b1c6bd97f192279e9fb.html 结论一: 一个长度为 l 的循环 T,l 是 k 的倍数,则 T^k 是 k 个循环的乘积,每个循环分别是循环 T 中下标 i mod k=0,1,2- 的元素按顺序的连接. 结论二:一个长度为 l 的循环 T,gcd(l,k)=1,则 T^k 是一个循环,与循环 T 不一

POJ 3128 Leonardo&#39;s Notebook (置换)

Leonardo's Notebook Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 2324   Accepted: 988 Description - I just bought Leonardo's secret notebook! Rare object collector Stan Ucker was really agitated but his friend, special investigator Sa

POJ 3128 Leonardo&#39;s Notebook [置换群]

传送门 题意:26个大写字母的置换$B$,是否存在置换$A$满足$A^2=B$ $A^2$,就是在循环中一下子走两步 容易发现,长度$n$为奇数的循环走两步还是$n$次回到原点 $n$为偶数的话是$\frac{n}{2}$次,也就是说分裂成了两个循环 综上$B$中长度为偶数的循环有奇数个就是不存在啦 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #inclu

uva 12103 - Leonardo&#39;s Notebook(置换)

题目链接:uva 12103 - Leonardo's Notebook 题目大意:给出26个字母的置换,问是否存在一个置换A,使得A2=B 解题思路:将给定置换分解成若干个不相干的循环,当循环的长度n为奇数时,可以由两个循环长度为n的循环的乘积得来,也可以由两个循环长度为2n的拆分而来:对于长度n为偶数的,只能由两个循环长度为2n的拆分而来,所以判断是否存在有循环长度为偶数的个数是奇数个即可. #include <cstdio> #include <cstring> #inclu

【POJ 3128】Leonardo&#39;s Notebook

这道题的问题就是说能否对一个给定的置换进行开方运算 关于这个问题讲的最为详细的是05年集训队论文 潘震皓:<置换群快速幂运算研究与探讨> 对于一个长度为l的轮换,若gcd(l,k)==1,则可以开k方 若gcd(l,k)!=1则对于单个循环是不能开k方的 而若有m个长度为l的轮换,只需要保证gcd(m*l,k)==m就可以 因为开k方是k次方的逆运算,只要保证目标轮换的k次方会分裂成m个数就好了 而若能保证gcd(m*l,k)==m,则m|k,且gcd(l,k/m)==1,即m为k的因子 则最

LA 3641 (置换 循环的分解) Leonardo&#39;s Notebook

给出一个26个大写字母的置换B,是否存在A2 = B 每个置换可以看做若干个循环的乘积.我们可以把这些循环看成中UVa 10294的项链, 循环中的数就相当于项链中的珠子. A2就相当于将项链旋转了两个珠子间的距离,珠子0.2.4...构成一个循环,一共有gcd(n, 2)个循环,每个循环的长度为n / gcd(n, 2) 所以当一个循环的长度为奇数的时候,平方以后还是原来的长度: 当一个循环的长度为偶数的时候,平方以后就会分解为两个长度都等于原来循环长度一半的循环. 先将置换B分解循环,对于其

Leonardo&#39;s Notebook UVALive - 3641(置换)

题意: 给出26个大写字母的置换B,问是否存在一个置换A,使得A2 = B 解析: 两个长度为n的相同循环相乘,1.当n为奇数时结果也是一个长度为n的循环:2. 当n为偶数时分裂为两个长度为n/2 (这个n/2可能是奇数 也可能是偶数)的循环 那么倒推 意思也就是说 对于长度为奇数的循环B(奇数个相同长度的倒推1  偶数个相同长度的倒推2)  总可以找出来一个循环A  使得A2 = B 而对于长度为偶数的循环B   只有偶数个相同长度的才能从2倒推 不然 就不能倒推 即找不到一个A使得A2 =

UVA 12103 - Leonardo&#39;s Notebook(数论置换群)

UVA 12103 - Leonardo's Notebook 题目链接 题意:给定一个字母置换B,求是否存在A使得A^2=B 思路:任意一个长为 L 的置换的k次幂,会把自己分裂成gcd(L,k) 分, 并且每一份的长度都为 L / gcd(l,k),因此平方对于奇数长度不变,偶数则会分裂成两份长度相同的循环,因此如果B中偶数长度的循环个数不为偶数必然不存在A了 代码: #include <stdio.h> #include <string.h> const int N = 30

hrbust oj 1536 Leonardo&#39;s Notebook 置换群问题

题目大意: 给出一个A~Z的置换G,问能否找到一个A~Z的置换G' 能够用来表示为 G = G'*G' 由定理: 任意一个长为 L 的置换的k次幂,都会把自己的每一个循环节分裂成gcd(L, K)份,并且每一份的长度都为L/gcd(L,K) 这里是置换的平方,所以G'长度为偶数的循环节必然会分裂为两个相等的循环节,长度为奇数的循环节还是一个循环节长度不变 那么得到的G中长度为偶数的循环节必然是由G'中偶数的循环节分裂得到,奇数的循环节可以不多做考虑,就认为它是原来的奇数循环节保持不变所得 所以这