RING0,RING1,RING2,RING3

Intel的CPU将特权级别分为4个级别:RING0,RING1,RING2,RING3。Windows只使用其中的两个级别RING0和RING3,RING0只给操作系统用,RING3谁都能用。如果普通应用程序企图执行RING0指令,则Windows会显示“非法指令”错误信息。

 挑战:

  1. 大部分modern CPU 并不支持可虚拟化, 如x86
  2. 需直接访问内存和硬件的操作系统特权代码必须在Ring 0执行
  3. CPU虚拟化必须在Guest OS下面添加VMM(Ring 0)
  4. 一些关键指令在非Ring 0权限级执行具有不同语义: 不能有效虚拟化,如POPF指令
  5. 非特权级指令可以查询CPU的当前特权级, x86并不trap这些指令

CPU Virtualization Tech

全虚拟化(Full Virtulization)

简介:主要是在客户操作系统和硬件之间捕捉和处理那些对虚拟化敏感的特权指令,使客户操作系统无需修改就能运行,速度会根据不同的实现而不同,但大致能满足用户的需求。这种方式是业界现今最成熟和最常见的,而且属于 Hosted 模式和 Hypervisor 模式的都有,知名的产品有IBM CP/CMS,VirtualBox,KVM,VMware Workstation和VMware ESX(它在其4.0版,被改名为VMware vSphere)。

优点:Guest OS无需修改,速度和功能都非常不错,更重要的是使用非常简单,不论是 VMware 的产品,还是Sun(Oracle?)的 VirtualBox。

缺点:基于Hosted模式的全虚拟产品性能方面不是特别优异,特别是I/O方面。

未来:因为使用这种模式,不仅Guest OS免于修改,而且将通过引入硬件辅助虚拟化技术来提高其性能,我个人判断,在未来全虚拟化还是主流。

半虚拟化(Parairtulization)

简介:它与完全虚拟化有一些类似,它也利用Hypervisor来实现对底层硬件的共享访问,但是由于在Hypervisor 上面运行的Guest OS已经集成与半虚拟化有关的代码,使得Guest OS能够非常好地配合Hyperivosr来实现虚拟化。通过这种方法将无需重新编译或捕获特权指令,使其性能非常接近物理机,其最经典的产品就是Xen,而且因为微软的Hyper-V所采用技术和Xen类似,所以也可以把Hyper-V归属于半虚拟化。

优点:这种模式和全虚拟化相比,架构更精简,而且在整体速度上有一定的优势。

缺点:需要对Guest OS进行修改,所以在用户体验方面比较麻烦。

未来:我觉得其将来应该和现在的情况比较类似,在公有云(比如Amazon EC2)平台上应该继续占有一席之地,但是很难在其他方面和类似VMware vSphere这样的全虚拟化产品竞争,同时它也将会利用硬件辅助虚拟化技术来提高速度,并简化架构。

硬件辅助虚拟化(Hardware Assisted Virtualization)

简介:Intel/AMD等硬件厂商通过对部分全虚拟化和半虚拟化使用到的软件技术进行硬件化(具体将在下文详述)来提高性能。硬件辅助虚拟化技术常用于优化全虚拟化和半虚拟化产品,而不是独创一派,最出名的例子莫过于VMware Workstation,它虽然属于全虚拟化,但是在它的6.0版本中引入了硬件辅助虚拟化技术,比如Intel的VT-x和AMD的AMD-V。现在市面上的主流全虚拟化和半虚拟化产品都支持硬件辅助虚拟化,包括VirtualBox,KVM,VMware ESX和Xen。

优点:通过引入硬件技术,将使虚拟化技术更接近物理机的速度。

缺点:现有的硬件实现不够优化,还有进一步提高的空间。

未来:因为通过使用硬件技术不仅能提高速度,而且能简化虚拟化技术的架构,所以预见硬件技术将会被大多数虚拟化产品所采用。

操作系统级虚拟化(Operating System Level Virtualization)

简介:这种技术通过对服务器操作系统进行简单地隔离来实现虚拟化,主要用于VPS。主要的技术有Parallels Virtuozzo Containers,Unix-like系统上的chroot和Solaris上的Zone等。

优点:因为它是对操作系统进行直接的修改,所以实现成本低而且性能不错。

缺点:在资源隔离方面表现不佳,而且对Guest OS的型号和版本有限定。

未来:不明朗,我觉得除非有革命性技术诞生,否则还应该属于小众,比如VPS。
时间: 2024-08-07 20:59:40

RING0,RING1,RING2,RING3的相关文章

全虚拟化和半虚拟化的区别 cpu的ring0 ring1又是什么概念?

ring0是指CPU的运行级别,ring0是最高级别,ring1次之,ring2更次之…… 拿Linux+x86来说, 操作系统(内核)的代码运行在最高运行级别ring0上,可以使用特权指令,控制中断.修改页表.访问设备等等. 应用程序的代码运行在最低运行级别上ring3上,不能做受控操作.如果要做,比如要访问磁盘,写文件,那就要通过执行系统调用(函数),执行系统调用的时候,CPU的运行级别会发生从ring3到ring0的切换,并跳转到系统调用对应的内核代码位置执行,这样内核就为你完成了设备访问

Ring0创建事件Ring3设置事件

同步事件(synchronizationEvent)当事件对象为激发时,如遇到KeWaitForXX等内核函数,事件对象则自动变回未激发态通知事件(NotificationEvent)当事件对象为激发时,如遇到KeWaitForXX等内核函数,事件对象则不会自动变回未激发态 Ring0(创建事件).h 1 #include <ntifs.h> 2 3 4 #define EVENT_NAME L"\\BaseNamedObjects\\Ring0KernelEvent" 5

Ring3 和Ring0 解释

这得从CPU指令系统(用于控制CPU完成各种功能的命令)的特权级别说起.在CPU的所有指令中,有一些指令是非常危险的,如果错用,将导致整个系统崩溃.比如:清内存.设置时钟等.如果所有的程序都能使用这些指令,那么你的系统一天死机n回就不足为奇了.所以,CPU将指令分为特权指令和非特权指令,对于那些危险的指令,只允许操作系统及其相关模块使用,普通的应用程序只能使用那些不会造成灾难的指令.形象地说,特权指令就是那些儿童不宜的东东,而非特权指令则是老少皆宜. Intel的CPU将特权级别分为4个级别:R

Linux 系统应用编程——进程基础

一.Linux下多任务机制的介绍 Linux有一特性是多任务,多任务处理是指用户可以在同一时间内运行多个应用程序,每个正在执行的应用程序被称为一个任务. 多任务操作系统使用某种调度(shedule)策略(由内核来执行)支持多个任务并发执行.事实上,(单核)处理器在某一时刻只能执行一个任务.每个任务创建时被分配时间片(几十到上百毫秒),任务执行(占用CPU)时,时间片递减.操作系统会在当前任务的时间片用完时调度执行其他任务.由于任务会频繁地切换执行,因此给用户多个任务运行的感觉.所以可以说,多任务

操作系统原理(转)

操作系统原理   我们每天都同操作系统打交道,了解一些操作系统原理上的知识是绝对有必要的,它可以让你了解操作系统内部是怎么工作的,为什么会出现这样那样的问题,为我们解决这些问题提供思路. 本文完全是为普通电脑用户写的,省略了所有难以理解的算法.原理,没有太多细节上的东西,只是针对普通电脑用户可能感兴趣的问题给出了实现思想.写这些东 西只是我的一相情愿,就怕我还是写得深了些,初学者读不懂.如果这10K文字能让你对操作系统有更深的了解,那也就不枉了这几个汗流浃背的夏日午后了. Q:什么是中断?A:中

操作系统基础概念

20150511 参考资料,只记录自己不懂的. http://blog.csdn.net/ckli/article/details/1680373 中断 Intel的CPU将特权级别分为4个级别:RING0,RING1,RING2,RING3.Windows只 使用其中的两个级别RING0和RING3,RING0只给操作系统用,RING3谁都能用.

CPU的Ring等级

Intel的x86处理器是通过Ring级别来进行访问控制的,级别共分4层,RING0,RING1,RING2,RING3. RING0层拥有最高的权限,RING3层拥有最低的权限. Windows只使用其中的两个级别RING0和RING3.按照Intel原有的构想,应用程序工作在RING3层,只能访问RING3层的数据,操作系统工作在RING0层,可以访问所有层的数据,而其他驱动程序位于RING1.RING2层,每一层只能访问本层以及权限更低层的数据.如果普通应用程序企图执行RING0指令,则W

20150917 Linux进程查看与管理以及作业管理

第一.基础知识 MBR引导--内核--内核程序-->协调其它程序 一般内核运行在硬件之上,各应用也在硬件之前 1)OS的基本功能:文件系统.网络功能.进程管理.内存管理.驱动程序.安全功能 以上为通用目的设置的程序., 程序=指令+数据, 程序运行在内存当中.这个内存由物理内存映射逻辑空间 左则表示二个框分别表示指令和数据.物理内存划分固定大小的页框称为pageframe. 右则下面的方框表示物理内存.每个进程在右则上面的方框中,这部分为假的内存 空间称为线性地址空间. 2)CPU指令:  四个

关于硬件加速哪些优秀的资源总结

问题1:transform动画为什么没有经过大量的重绘? 解答:为什么 transform 没有触发 repaint 呢?(1)简而言之,transform 动画由GPU控制,支持硬件加速,并不需要软件方面的渲染.(2)浏览器接收到页面文档后,会将文档中的标记语言解析为DOM树.DOM树和CSS结合后形成浏览器构建页面的渲染树.渲染树中包含了大量的渲染元素,每一个渲染元素会被分到一个图层中,每个图层又会被加载到GPU形成渲染纹理,而图层在GPU中transform 是不会触发 repaint 的