sqoop的安装与使用

1.什么是Sqoop

Sqoop即 SQL to Hadoop ,是一款方便的在传统型数据库与Hadoop之间进行数据迁移的工具,充分利用MapReduce并行特点以批处理的方式加快数据传输,发展至今主要演化了二大版本,Sqoop1和Sqoop2。

Sqoop工具是hadoop下连接关系型数据库和Hadoop的桥梁,支持关系型数据库和hive、hdfs,hbase之间数据的相互导入,可以使用全表导入和增量导入。

那么为什么选择Sqoop呢?

高效可控的利用资源,任务并行度,超时时间。 数据类型映射与转化,可自动进行,用户也可自定义 支持多种主流数据库,MySQL,Oracle,SQL Server,DB2等等

2.Sqoop1和Sqoop2对比的异同之处

两个不同的版本,完全不兼容 版本号划分区别,Apache版本:1.4.x(Sqoop1); 1.99.x(Sqoop2)     CDH版本 : Sqoop-1.4.3-cdh4(Sqoop1) ; Sqoop2-1.99.2-cdh4.5.0 (Sqoop2)Sqoop2比Sqoop1的改进 引入Sqoop server,集中化管理connector等 多种访问方式:CLI,Web UI,REST API 引入基于角色的安全机制

3.Sqoop1与Sqoop2的架构图

Sqoop架构图1

Sqoop架构图2

4.Sqoop1与Sqoop2的优缺点


比较


Sqoop1


Sqoop2


架构


仅仅使用一个Sqoop客户端


引入了Sqoop server集中化管理connector,以及rest api,web,UI,并引入权限安全机制


部署


部署简单,安装需要root权限,connector必须符合JDBC模型


架构稍复杂,配置部署更繁琐


使用


命令行方式容易出错,格式紧耦合,无法支持所有数据类型,安全机制不够完善,例如密码暴漏


多种交互方式,命令行,web UI,rest API,conncetor集中化管理,所有的链接安装在Sqoop server上,完善权限管理机制,connector规范化,仅仅负责数据的读写

5.Sqoop1的安装部署

5.0 安装环境

hadoop:hadoop-2.3.0-cdh5.1.2

sqoop:sqoop-1.4.4-cdh5.1.2

5.1 下载安装包及解压

tar -zxvf  sqoop-1.4.4-cdh5.1.2.tar.gz

ln -s sqoop-1.4.4-cdh5.1.2  sqoop

5.2 配置环境变量和配置文件

<span style="font-size:18px;">cd sqoop/conf/

cat  sqoop-env-template.sh  >> sqoop-env.sh

vi sqoop-env.sh </span>

在sqoop-env.sh中添加如下代码

<span style="font-size:18px;"># Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# included in all the hadoop scripts with source command
# should not be executable directly
# also should not be passed any arguments, since we need original $*

# Set Hadoop-specific environment variables here.

#Set path to where bin/hadoop is available
export HADOOP_COMMON_HOME=/home/hadoop/hadoop

#Set path to where hadoop-*-core.jar is available
export HADOOP_MAPRED_HOME=/home/hadoop/hadoop

#set the path to where bin/hbase is available
export HBASE_HOME=/home/hadoop/hbase

#Set the path to where bin/hive is available
export HIVE_HOME=/home/hadoop/hive

#Set the path for where zookeper config dir is
export ZOOCFGDIR=/home/hadoop/zookeeper
</span>

该配置文件中只有HADOOP_COMMON_HOME的配置是必须的 另外关于hbase和hive的配置 如果用到需要配置 不用的话就不用配置

5.3 添加需要的jar包到lib下面

这里的jar包指的是连接关系型数据库的jar 比如mysql oracle  这些jar包是需要自己添加到lib目录下面去的

<span style="font-size:18px;"> cp  ~/hive/lib/mysql-connector-java-5.1.30.jar   ~/sqoop/lib/</span>

5.4 添加环境变量

vi ~/.profile

添加如下内容

<span style="font-size:18px;">export SQOOP_HOME=/home/hadoop/sqoop

export SBT_HOME=/home/hadoop/sbt

export PATH=$PATH:$SBT_HOME/bin:$SQOOP_HOME/bin
export CLASSPATH=$CLASSPATH:$SQOOP_HOME/lib
</span>

source ~/.profile使配置文件生效

5.5 测试mysql数据库的连接使用

①连接mysql数据库,列出所有的数据库

<span style="font-size:18px;">[email protected]:~/sqoop/conf$ sqoop list-databases --connect jdbc:mysql://127.0.0.1:3306/ --username root -P
Warning: /home/hadoop/sqoop/../hive-hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /home/hadoop/sqoop/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
14/10/21 18:15:15 INFO sqoop.Sqoop: Running Sqoop version: 1.4.4-cdh5.1.2
Enter password:
14/10/21 18:15:19 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
information_schema
XINGXUNTONG
XINGXUNTONG_HIVE
amon
hive
hmon
mahout
mysql
oozie
performance_schema
realworld
rman
scm
smon
</span>

-P表示输入密码 可以直接使用--password来制定密码

②mysql数据库的表导入到HDFS

[email protected]:~/sqoop/conf$ sqoop import -m 1  --connect jdbc:mysql://127.0.0.1:3306/realworld --username root -P --table weblogs --target-dir /user/sqoop/test1
Warning: /home/hadoop/sqoop/../hive-hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /home/hadoop/sqoop/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
14/10/21 18:19:18 INFO sqoop.Sqoop: Running Sqoop version: 1.4.4-cdh5.1.2
Enter password:
14/10/21 18:19:21 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
14/10/21 18:19:21 INFO tool.CodeGenTool: Beginning code generation
14/10/21 18:19:22 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `weblogs` AS t LIMIT 1
14/10/21 18:19:22 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `weblogs` AS t LIMIT 1
14/10/21 18:19:22 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /home/hadoop/hadoop
Note: /tmp/sqoop-hadoop/compile/15cb67e2b315154cdf02e3a17cf32bbe/weblogs.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.
14/10/21 18:19:23 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/15cb67e2b315154cdf02e3a17cf32bbe/weblogs.jar
14/10/21 18:19:23 WARN manager.MySQLManager: It looks like you are importing from mysql.
14/10/21 18:19:23 WARN manager.MySQLManager: This transfer can be faster! Use the --direct
14/10/21 18:19:23 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.
14/10/21 18:19:23 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)
14/10/21 18:19:23 INFO mapreduce.ImportJobBase: Beginning import of weblogs
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/home/hadoop/hadoop-2.3.0-cdh5.1.2/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/home/hadoop/hbase-0.98.1-cdh5.1.2/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
14/10/21 18:19:24 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
14/10/21 18:19:24 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
14/10/21 18:19:25 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
14/10/21 18:19:25 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
14/10/21 18:19:40 INFO db.DBInputFormat: Using read commited transaction isolation
14/10/21 18:19:41 INFO mapreduce.JobSubmitter: number of splits:1
14/10/21 18:19:42 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1413879907572_0002
14/10/21 18:19:46 INFO impl.YarnClientImpl: Submitted application application_1413879907572_0002
14/10/21 18:19:46 INFO mapreduce.Job: The url to track the job: N/A
14/10/21 18:19:46 INFO mapreduce.Job: Running job: job_1413879907572_0002
14/10/21 18:20:12 INFO mapreduce.Job: Job job_1413879907572_0002 running in uber mode : false
14/10/21 18:20:12 INFO mapreduce.Job:  map 0% reduce 0%
14/10/21 18:20:41 INFO mapreduce.Job:  map 100% reduce 0%
14/10/21 18:20:45 INFO mapreduce.Job: Job job_1413879907572_0002 completed successfully
14/10/21 18:20:46 INFO mapreduce.Job: Counters: 30
	File System Counters
		FILE: Number of bytes read=0
		FILE: Number of bytes written=107189
		FILE: Number of read operations=0
		FILE: Number of large read operations=0
		FILE: Number of write operations=0
		HDFS: Number of bytes read=87
		HDFS: Number of bytes written=251130
		HDFS: Number of read operations=4
		HDFS: Number of large read operations=0
		HDFS: Number of write operations=2
	Job Counters
		Launched map tasks=1
		Other local map tasks=1
		Total time spent by all maps in occupied slots (ms)=22668
		Total time spent by all reduces in occupied slots (ms)=0
		Total time spent by all map tasks (ms)=22668
		Total vcore-seconds taken by all map tasks=22668
		Total megabyte-seconds taken by all map tasks=23212032
	Map-Reduce Framework
		Map input records=3000
		Map output records=3000
		Input split bytes=87
		Spilled Records=0
		Failed Shuffles=0
		Merged Map outputs=0
		GC time elapsed (ms)=41
		CPU time spent (ms)=1540
		Physical memory (bytes) snapshot=133345280
		Virtual memory (bytes) snapshot=1201442816
		Total committed heap usage (bytes)=76021760
	File Input Format Counters
		Bytes Read=0
	File Output Format Counters
		Bytes Written=251130
14/10/21 18:20:46 INFO mapreduce.ImportJobBase: Transferred 245.2441 KB in 80.7974 seconds (3.0353 KB/sec)
14/10/21 18:20:46 INFO mapreduce.ImportJobBase: Retrieved 3000 records.

-m 表示启动几个map任务来读取数据   如果数据库中的表没有主键这个参数是必须设置的而且只能设定为1   否则会提示

14/10/21 18:18:27 ERROR tool.ImportTool: Error during import: No primary key could be found for table weblogs. Please specify one with --split-by or perform a sequential import with '-m 1'.

而这个参数设置为几会直接决定导入的文件在hdfs上面是分成几块的 比如 设置为1 则会产生一个数据文件

14/10/21 18:23:54 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
-rw-r--r--   1 hadoop supergroup          0 2014-10-21 18:20 /user/sqoop/test1/_SUCCESS
-rw-r--r--   1 hadoop supergroup     251130 2014-10-21 18:20 /user/sqoop/test1/part-m-00000

这里添加主键:

mysql> desc weblogs;
+--------------+-------------+------+-----+---------+-------+
| Field        | Type        | Null | Key | Default | Extra |
+--------------+-------------+------+-----+---------+-------+
| md5          | varchar(32) | YES  |     | NULL    |       |
| url          | varchar(64) | YES  |     | NULL    |       |
| request_date | date        | YES  |     | NULL    |       |
| request_time | time        | YES  |     | NULL    |       |
| ip           | varchar(15) | YES  |     | NULL    |       |
+--------------+-------------+------+-----+---------+-------+
5 rows in set (0.00 sec)

mysql> alter table weblogs add primary key(md5,ip);
Query OK, 3000 rows affected (1.60 sec)
Records: 3000  Duplicates: 0  Warnings: 0

mysql> desc weblogs;
+--------------+-------------+------+-----+---------+-------+
| Field        | Type        | Null | Key | Default | Extra |
+--------------+-------------+------+-----+---------+-------+
| md5          | varchar(32) | NO   | PRI |         |       |
| url          | varchar(64) | YES  |     | NULL    |       |
| request_date | date        | YES  |     | NULL    |       |
| request_time | time        | YES  |     | NULL    |       |
| ip           | varchar(15) | NO   | PRI |         |       |
+--------------+-------------+------+-----+---------+-------+
5 rows in set (0.02 sec)

然后指定-m

[email protected]:~/sqoop/conf$ sqoop import -m 2  --connect jdbc:mysql://127.0.0.1:3306/realworld --username root -P --table weblogs --target-dir /user/sqoop/test2
Warning: /home/hadoop/sqoop/../hive-hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /home/hadoop/sqoop/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
14/10/21 18:22:40 INFO sqoop.Sqoop: Running Sqoop version: 1.4.4-cdh5.1.2
Enter password:
14/10/21 18:24:04 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
14/10/21 18:24:04 INFO tool.CodeGenTool: Beginning code generation
14/10/21 18:24:04 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `weblogs` AS t LIMIT 1
14/10/21 18:24:04 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `weblogs` AS t LIMIT 1
14/10/21 18:24:04 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /home/hadoop/hadoop
Note: /tmp/sqoop-hadoop/compile/7061f445f29510afa2b89729126a57b9/weblogs.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.
14/10/21 18:24:07 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/7061f445f29510afa2b89729126a57b9/weblogs.jar
14/10/21 18:24:07 WARN manager.MySQLManager: It looks like you are importing from mysql.
14/10/21 18:24:07 WARN manager.MySQLManager: This transfer can be faster! Use the --direct
14/10/21 18:24:07 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.
14/10/21 18:24:07 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)
14/10/21 18:24:07 ERROR tool.ImportTool: Error during import: No primary key could be found for table weblogs. Please specify one with --split-by or perform a sequential import with '-m 1'.
[email protected]:~/sqoop/conf$ sqoop import -m 2  --connect jdbc:mysql://127.0.0.1:3306/realworld --username root -P --table weblogs --target-dir /user/sqoop/test2
Warning: /home/hadoop/sqoop/../hive-hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /home/hadoop/sqoop/../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
14/10/21 18:30:04 INFO sqoop.Sqoop: Running Sqoop version: 1.4.4-cdh5.1.2
Enter password:
14/10/21 18:30:07 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
14/10/21 18:30:07 INFO tool.CodeGenTool: Beginning code generation
14/10/21 18:30:07 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `weblogs` AS t LIMIT 1
14/10/21 18:30:07 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `weblogs` AS t LIMIT 1
14/10/21 18:30:07 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /home/hadoop/hadoop
Note: /tmp/sqoop-hadoop/compile/6dbf2401c1a51b81c5b885e6f7d43137/weblogs.java uses or overrides a deprecated API.
Note: Recompile with -Xlint:deprecation for details.
14/10/21 18:30:09 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-hadoop/compile/6dbf2401c1a51b81c5b885e6f7d43137/weblogs.jar
14/10/21 18:30:09 WARN manager.MySQLManager: It looks like you are importing from mysql.
14/10/21 18:30:09 WARN manager.MySQLManager: This transfer can be faster! Use the --direct
14/10/21 18:30:09 WARN manager.MySQLManager: option to exercise a MySQL-specific fast path.
14/10/21 18:30:09 INFO manager.MySQLManager: Setting zero DATETIME behavior to convertToNull (mysql)
14/10/21 18:30:09 WARN manager.CatalogQueryManager: The table weblogs contains a multi-column primary key. Sqoop will default to the column md5 only for this job.
14/10/21 18:30:09 WARN manager.CatalogQueryManager: The table weblogs contains a multi-column primary key. Sqoop will default to the column md5 only for this job.
14/10/21 18:30:09 INFO mapreduce.ImportJobBase: Beginning import of weblogs
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/home/hadoop/hadoop-2.3.0-cdh5.1.2/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/home/hadoop/hbase-0.98.1-cdh5.1.2/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
14/10/21 18:30:09 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
14/10/21 18:30:09 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
14/10/21 18:30:10 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
14/10/21 18:30:10 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
14/10/21 18:30:17 INFO db.DBInputFormat: Using read commited transaction isolation
14/10/21 18:30:17 INFO db.DataDrivenDBInputFormat: BoundingValsQuery: SELECT MIN(`md5`), MAX(`md5`) FROM `weblogs`
14/10/21 18:30:17 WARN db.TextSplitter: Generating splits for a textual index column.
14/10/21 18:30:17 WARN db.TextSplitter: If your database sorts in a case-insensitive order, this may result in a partial import or duplicate records.
14/10/21 18:30:17 WARN db.TextSplitter: You are strongly encouraged to choose an integral split column.
14/10/21 18:30:18 INFO mapreduce.JobSubmitter: number of splits:4
14/10/21 18:30:18 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1413879907572_0003
14/10/21 18:30:19 INFO impl.YarnClientImpl: Submitted application application_1413879907572_0003
14/10/21 18:30:19 INFO mapreduce.Job: The url to track the job: N/A
14/10/21 18:30:19 INFO mapreduce.Job: Running job: job_1413879907572_0003
14/10/21 18:30:32 INFO mapreduce.Job: Job job_1413879907572_0003 running in uber mode : false
14/10/21 18:30:32 INFO mapreduce.Job:  map 0% reduce 0%
14/10/21 18:31:12 INFO mapreduce.Job:  map 50% reduce 0%
14/10/21 18:31:13 INFO mapreduce.Job:  map 75% reduce 0%
14/10/21 18:31:15 INFO mapreduce.Job:  map 100% reduce 0%
14/10/21 18:31:21 INFO mapreduce.Job: Job job_1413879907572_0003 completed successfully
14/10/21 18:31:22 INFO mapreduce.Job: Counters: 30
	File System Counters
		FILE: Number of bytes read=0
		FILE: Number of bytes written=429312
		FILE: Number of read operations=0
		FILE: Number of large read operations=0
		FILE: Number of write operations=0
		HDFS: Number of bytes read=532
		HDFS: Number of bytes written=251209
		HDFS: Number of read operations=16
		HDFS: Number of large read operations=0
		HDFS: Number of write operations=8
	Job Counters
		Launched map tasks=4
		Other local map tasks=4
		Total time spent by all maps in occupied slots (ms)=160326
		Total time spent by all reduces in occupied slots (ms)=0
		Total time spent by all map tasks (ms)=160326
		Total vcore-seconds taken by all map tasks=160326
		Total megabyte-seconds taken by all map tasks=164173824
	Map-Reduce Framework
		Map input records=3001
		Map output records=3001
		Input split bytes=532
		Spilled Records=0
		Failed Shuffles=0
		Merged Map outputs=0
		GC time elapsed (ms)=806
		CPU time spent (ms)=5450
		Physical memory (bytes) snapshot=494583808
		Virtual memory (bytes) snapshot=4805771264
		Total committed heap usage (bytes)=325058560
	File Input Format Counters
		Bytes Read=0
	File Output Format Counters
		Bytes Written=251209
14/10/21 18:31:22 INFO mapreduce.ImportJobBase: Transferred 245.3213 KB in 72.5455 seconds (3.3816 KB/sec)

这里产生的文件跟主键的字段个数以及-m的参数是相关的 大致是-m的值乘以主键字段数,有待考证

[email protected]:~/study/cdh5$ hadoop fs -ls /user/sqoop/test2/
14/10/21 18:32:01 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 5 items
-rw-r--r--   1 hadoop supergroup          0 2014-10-21 18:31 /user/sqoop/test2/_SUCCESS
-rw-r--r--   1 hadoop supergroup          0 2014-10-21 18:31 /user/sqoop/test2/part-m-00000
-rw-r--r--   1 hadoop supergroup     251130 2014-10-21 18:31 /user/sqoop/test2/part-m-00001
-rw-r--r--   1 hadoop supergroup          0 2014-10-21 18:31 /user/sqoop/test2/part-m-00002
-rw-r--r--   1 hadoop supergroup         79 2014-10-21 18:31 /user/sqoop/test2/part-m-00003

这里的主键设计的不合理导致数据分布不均匀~~  有待改进

③数据导出Oracle和HBase

使用export可将hdfs中数据导入到远程数据库中

export --connect jdbc:oracle:thin:@192.168.**.**:**:**--username **--password=** -m1table VEHICLE--export-dir /user/root/VEHICLE

向Hbase导入数据

sqoop import --connect jdbc:oracle:thin:@192.168.**.**:**:**--username**--password=**--m 1 --table VEHICLE --hbase-create-table --hbase-table VEHICLE--hbase-row-key ID --column-family VEHICLEINFO --split-by ID

5.6 测试Mysql数据库的使用

前提:导入mysql jdbc的jar包

①测试数据库连接

sqoop list-databases –connect jdbc:mysql://192.168.10.63 –username root–password 123456

②Sqoop的使用

以下所有的命令每行之后都存在一个空格,不要忘记

(以下6中命令都没有进行过成功测试)

<1>mysql–>hdfs

sqoop export –connect

jdbc:mysql://192.168.10.63/ipj

–username root

–password 123456

–table ipj_flow_user

–export-dir hdfs://192.168.10.63:8020/user/flow/part-m-00000

前提:

(1)hdfs中目录/user/flow/part-m-00000必须存在

(2)如果集群设置了压缩方式lzo,那么本机必须得安装且配置成功lzo

(3)hadoop集群中每个节点都要有对mysql的操作权限

<2>hdfs–>mysql

sqoop import –connect

jdbc:mysql://192.168.10.63/ipj

–table ipj_flow_user

<3>mysql–>hbase

sqoop  import  –connect

jdbc:mysql://192.168.10.63/ipj

–table ipj_flow_user

–hbase-table ipj_statics_test

–hbase-create-table

–hbase-row-key id

–column-family imei

<4>hbase–>mysql

关于将Hbase的数据导入到mysql里,Sqoop并不是直接支持的,一般采用如下3种方法:

第一种:将Hbase数据扁平化成HDFS文件,然后再由Sqoop导入.

第二种:将Hbase数据导入Hive表中,然后再导入mysql。

第三种:直接使用Hbase的Java API读取表数据,直接向mysql导入

不需要使用Sqoop。

<5>mysql–>hive

sqoop import –connect

jdbc:mysql://192.168.10.63/ipj

–table hive_table_test

–hive-import

–hive-table hive_test_table 或–create-hive-table hive_test_table

<6>hive–>mysql

sqoop export –connect

jdbc:mysql://192.168.10.63/ipj

–username hive

–password 123456

–table target_table

–export-dir /user/hive/warehouse/uv/dt=mytable

前提:mysql中表必须存在

③Sqoop其他操作

<1>列出mysql中的所有数据库

sqoop list-databases –connect jdbc:mysql://192.168.10.63:3306/ –usernameroot –password 123456

<2>列出mysql中某个库下所有表

sqoop list-tables –connect jdbc:mysql://192.168.10.63:3306/ipj –usernameroot –password 123456

6 Sqoop1的性能

测试数据:

表名:tb_keywords

行数:11628209

数据文件大小:1.4G

测试结果:


HDFS--->DB


HDFS<---DB


Sqoop


428s


166s


HDFS<->FILE<->DB


209s


105s

从结果上来看,以FILE作为中转方式性能是要高于SQOOP的,原因如下:

本质上SQOOP使用的是JDBC,效率不会比MYSQL自带的导入\导出工具效率高以导入数据到DB为例,SQOOP的设计思想是分阶段提交,也就是说假设一个表有1K行,那么它会先读出100行(默认值),然后插入,提交,再读取100行……如此往复

即便如此,SQOOP也是有优势的,比如说使用的便利性,任务执行的容错性等。在一些测试环境中如果需要的话可以考虑把它拿来作为一个工具使用。

时间: 2024-09-30 20:02:10

sqoop的安装与使用的相关文章

hadoop伪分布下的sqoop基本安装配置

1.环境工具版本介绍 centos6.4(Final) jdk-7u60-linux-i586.gz hadoop-1.1.2.tar.gz sqoop-1.4.3.bin__hadoop-1.0.0.tar.gz mysql-5.6.11.tar.gz 2.安装centos 参照网上Ultra的使用制作了U盘启动,直接格式化安装系统,具体做法网上资料很多,但注意最好不要在安装时改主机名称,也最好不要利用图形化界面添加用户,因为我出过问题重做了系统,这些terminal中都能完成的 3.安装jd

大数据学习之十五——sqoop的安装和使用

1.概念了解 sqoop主要用于hadoop与传统的数据库(mysql.postgresql...)间进行数据的传递,可以将一个关系型数据库(例如:MYSQL,Oracle,Postgrep等)中的数据导到hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中. 2.sqoop的安装 (1)将压缩包sqoop-1.4.6.bin__hadoop-2.0.4-alpha.jar放在Linux的路径下,并修改配置文件/etc/profile export SQOOP_HOME=该压缩包

Sqoop环境安装

环境下载 首先将下载的 sqoop-1.4.6.bin__hadoop-2.0.4-alpha.tar.gz放到 /usr/hadoop/目录下(该目录可以自定义,一般为Hadoop集群安装目录),然后对安装包解压.修改文件名和修改用户权限. [[email protected] /]$ cd /usr/hadoop/ [[email protected] hadoop]$ ls flume hadoop-2.6.0 [[email protected] hadoop]$ rz //上传安装包

Sqoop的安装和验证

Sqoop是一个用来完成Hadoop和关系型数据库中的数据相互转移的工具,它可以将关系型数据库中的数据导入到Hadoop的HDFS中,也可以将HDFS的数据导入到关系型数据库中. Kafka是一个开源的分布式消息订阅系统 一.Sqoop的安装 1.http://www-eu.apache.org/dist/sqoop/1.4.7/下载sqoop-1.4.7.bin__hadoop-2.6.0.tar.gz并解压到/home/jun下 [[email protected] sqoop-1.4.7.

Hive/Hbase/Sqoop的安装教程

Hive/Hbase/Sqoop的安装教程 HIVE INSTALL 1.下载安装包:https://mirrors.tuna.tsinghua.edu.cn/apache/hive/hive-2.3.3/2.上传到Linux指定目录,解压: mkdir hive mv apache-hive-2.3.3-bin.tar.gz hive tar -zxvf apache-hive-2.3.3-bin.tar.gz mv apache-hive-2.3.3-bin apache-hive-2.3.

【sqoop】安装配置测试sqoop1

1.1.1 下载sqoop1:sqoop-1.4.7.bin__hadoop-2.6.0.tar.gz 1.1.2 解压并查看目录: [[email protected] ~]$ tar -zxvf sqoop-1.4.7.bin__hadoop-2.6.0.tar.gz --解压 [[email protected] ~]$ cd sqoop-1.4.7.bin__hadoop-2.6.0 [[email protected] sqoop-1.4.7.bin__hadoop-2.6.0]$ l

sqoop的安装和使用

在sqoop使用前,应先安装好hive和zookeeper,还要在一台虚拟机里安装好mysql 1.先将zookeeper启动:zkServer.sh start,集群启动起来:start-all.sh 2.启动mysql:service mysql  start 然后进入mysql的客户端: 3.在windows下安装mysql的客户端(可在西西软件园下载) 下载完成后,进入客户端 4.接下来安装sqoop-1.4.6 具体代码可参考: tar -zxvf sqoop-1.4.6.bin__h

Sqoop的安装部署

1.下载  sqoop-1.4.6-cdh5.7.6.tar.gz 2.在linux中进行安装, tar -zxvf /opt/tools/spark-1.6.1-bin-2.6.0-cdh5.7.6.tgz  -C /opt/cdh-5.7.6/ 3.进入sqoop安装目录,我装在/opt/cdh-5.7.6/sqoop-1.4.6-cdh5.7.6目录中 4.进入conf目录,为确保数据源,复制sqoop-env.template.cmd 同时重命名为sqoop-env.sh启用配置,cp 

Sqoop的安装与测试

[部署安装] # Sqoop是一个用来将Hadoop和关系型数据库中的数据相互转移的工具,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中. # 部署Sqoop到13.33,参考文档: Sqoop安装配置及演示 http://www.micmiu.com/bigdata/sqoop/sqoop-setup-and-demo/ # Sqoop只需要部署一份,目前部署在13.33,和