一步一步写算法(之排序二叉树)

原文:一步一步写算法(之排序二叉树)

【 声明:版权所有,欢迎转载,请勿用于商业用途。  联系信箱:feixiaoxing @163.com】

前面我们讲过双向链表的数据结构。每一个循环节点有两个指针,一个指向前面一个节点,一个指向后继节点,这样所有的节点像一颗颗珍珠一样被一根线穿在了一起。然而今天我们讨论的数据结构却有一点不同,它有三个节点。它是这样定义的:

typedef struct _TREE_NODE
{
	int data;
	struct _TREE_NODE* parent;
	struct _TREE_NODE* left_child;
	struct _TREE_NODE* right_child;
}TREE_NODE;

根据上面的数据结构,我们看到每一个数据节点都有三个指针,分别是:指向父母的指针,指向左孩子的指针,指向右孩子的指针。每一个节点都是通过指针相互连接的。相连指针的关系都是父子关系。那么排序二叉树又是什么意思呢?其实很简单,只要在二叉树的基本定义上增加两个基本条件就可以了:(1)所有左子树的节点数值都小于此节点的数值;(2)所有右节点的数值都大于此节点的数值。

既然看到了节点的定义,那么我们并可以得到,只要按照一定的顺序遍历,可以把二叉树中的节点按照某一个顺序打印出来。那么,节点的创建、查找、遍历是怎么进行的呢,二叉树的高度应该怎么计算呢?我们一一道来。

1)创建二叉树节点

TREE_NODE* create_tree_node(int data)
{
	TREE_NODE* pTreeNode = NULL;
	pTreeNode = (TREE_NODE*)malloc(sizeof(TREE_NODE));
	assert(NULL != pTreeNode);

	memset(pTreeNode, 0, sizeof(TREE_NODE));
	pTreeNode->data = data;
	return pTreeNode;
}

分析:我们看到,二叉树节点的创建和我们看到的链表节点、堆栈节点创建没有什么本质的区别。首先需要为节点创建内存,然后对内存进行初始化处理。最后将输入参数data输入到tree_node当中即可。

2)数据的查找

TREE_NODE* find_data_in_tree_node(const TREE_NODE* pTreeNode, int data)
{
	if(NULL == pTreeNode)
		return NULL;

	if(data == pTreeNode->data)
		return (TREE_NODE*)pTreeNode;
	else if(data < pTreeNode->data)
		return find_data_in_tree_node(pTreeNode->left_child, data);
	else
		return find_data_in_tree_node(pTreeNode->right_child, data);
}

分析:我们的查找是按照递归迭代进行的。因为整个二叉树是一个排序二叉树,所以我们的数据只需要和每一个节点依次比较就可以了,如果数值比节点数据小,那么向左继续遍历;反之向右继续遍历。如果遍历下去遇到了NULL指针,只能说明当前的数据在二叉树中还不存在。

3)数据统计

int count_node_number_in_tree(const TREE_NODE* pTreeNode)
{
	if(NULL == pTreeNode)
		return 0;

	return 1 + count_node_number_in_tree(pTreeNode->left_child)
		+ count_node_number_in_tree(pTreeNode->right_child);
}

分析:和上面查找数据一样,统计的工作也比较简单。如果是节点指针,那么直接返回0即可,否则就需要分别统计左节点树的节点个数、右节点树的节点个数,这样所有的节点总数加起来就可以了。

4)按照从小到大的顺序打印节点的数据

void print_all_node_data(const TREE_NODE* pTreeNode)
{
	if(pTreeNode){
		print_all_node_data(pTreeNode->left_child);
		printf("%d\n", pTreeNode->data);
		print_all_node_data(pTreeNode->right_child);
	}
}

分析:因为二叉树本身的特殊性,按顺序打印二叉树的函数本身也比较简单。首先打印左子树的节点,然后打印本节点的数值,最后打印右子树节点的数值,这样所有节点的数值就都可以打印出来了。

 5)统计树的高度

int calculate_height_of_tree(const TREE_NODE* pTreeNode)
{
	int left, right;
	if(NULL == pTreeNode)
		return 0;

	left = calculate_height_of_tree(pTreeNode->left_child);
	right = calculate_height_of_tree(pTreeNode->right_child);
	return (left > right) ? (left + 1) : (right + 1);
}

分析:树的高度其实是指所有叶子节点中,从根节点到叶子节点的最大高度可以达到多少。当然,程序中表示得已经很明白了,如果节点为空,那么很遗憾,节点的高度为0;反之如果左子树的高度大于右子树的高度,那么整个二叉树的节点高度就是左子树的高度加上1;如果右子树的高度大于左子树的高度,那么整个二叉树的高度就是右子树的高度加上1。计算树的高度在我们设计平衡二叉树的时候非常有用,特别是测试的时候,希望大家多多理解,熟练掌握。

总结:

1)二叉树是所有树的基础,后续的平衡二叉树、线性二叉树、红黑树、复合二叉树、b树、b+树都以此为基础,希望大家好好学习;

2)二叉树很多的操作是和堆栈紧密联系在一起的,如果大家暂时理解不了递归,可以用循环或者堆栈代替;

3)实践出真知,大家可以自己对排序二叉树的代码多多练习。不瞒大家说,我个人写平衡二叉树不下20多遍,即使这样也不能保证每次都正确;即使这样,我每次写代码的都有不同的感觉。

【预告: 下面一篇博客介绍平衡二叉树的插入和删除】

时间: 2024-10-07 18:15:27

一步一步写算法(之排序二叉树)的相关文章

一步一步写算法(之二叉树广度遍历)

原文:一步一步写算法(之二叉树广度遍历) [ 声明:版权所有,欢迎转载,请勿用于商业用途.  联系信箱:feixiaoxing @163.com] 在二叉树的遍历当中,有一种遍历方法是不常见的,那就是广度遍历.和其他三种遍历方法不同,二叉树的广度遍历需要额外的数据结构来帮助一下?什么数据结构呢?那就是队列.因为队列具有先进先出的特点,这个特点要求我们在遍历新的一层数据之前,必须对上一次的数据全部遍历结束.暂时还没有掌握队列知识的朋友可以看一看我的这一篇博客-队列. a)下面是新添加的队列数据结构

一步一步写算法(之二叉树深度遍历)

原文:一步一步写算法(之二叉树深度遍历) [ 声明:版权所有,欢迎转载,请勿用于商业用途.  联系信箱:feixiaoxing @163.com] 深度遍历是软件开发中经常遇到的遍历方法.常用的遍历方法主要有下面三种:(1)前序遍历:(2)中序遍历:(3)后序遍历.按照递归的方法,这三种遍历的方法其实都不困难,前序遍历就是根-左-右,中序遍历就是左-根-右,后续遍历就是左-右-根.代码实现起来也不复杂. 1)前序遍历 void preorder_traverse(TREE_NODE* pTree

c/c++ 通用的(泛型)算法 之 只读算法,写算法,排序算法

通用的(泛型)算法 之 只读算法,写算法,排序算法 只读算法: 函数名 功能描述 accumulate 求容器里元素的和 equal 比较2个容器里的元素 写算法 函数名 功能描述 fill 用给定值,覆盖给定的范围的元素 fill_n 用给定值,覆盖给定开始位置后的,n个元素变 back_inserter 在容器末尾插入元素 copy 把容器1指定范围里的值拷贝给容器2,并返回指向容器2最后一个元素的下个元素 replace 用某个值替换掉给定范围的某个值 replace_copy 用某个值替

一步一图一代码:排序二叉树

作者:禅楼望月(http://www.cnblogs.com/yaoyinglong/) 属性: ①若它的左子树不为空,则左子树上所有节点的值均小于它的根节点的值. ②若它的右子树不为空,则右子树上所有节点的值均大于它的根节点的值. ③它的左.右子树也都是排序二叉树. 添加操作: 当根节点为空时,添加进的节点作为根节点.然后每次添加节点时,都从根节点过滤,以根节点作为当前节点,如果新节点大于当前节点,则走当前节点的右子节点分支,如果新节点小于当前节点,则走当前节点的左子节点分支.然后再用右子节点

一步一图一代码之排序二叉树

作者:禅楼望月(http://www.cnblogs.com/yaoyinglong/) 属性: ①若它的左子树不为空,则左子树上所有节点的值均小于它的根节点的值. ②若它的右子树不为空,则右子树上所有节点的值均大于它的根节点的值. ③它的左.右子树也都是排序二叉树. 添加操作: 当根节点为空时,添加进的节点作为根节点.然后每次添加节点时,都从根节点过滤,以根节点作为当前节点,如果新节点大于当前节点,则走当前节点的右子节点分支,如果新节点小于当前节点,则走当前节点的左子节点分支.然后再用右子节点

计算机程序的思维逻辑 (42) - 排序二叉树

40节介绍了HashMap,41节介绍了HashSet,它们的共同实现机制是哈希表,一个共同的限制是没有顺序,我们提到,它们都有一个能保持顺序的对应类TreeMap和TreeSet,这两个类的共同实现基础是排序二叉树,为了更好的理解TreeMap/TreeSet,本节我们先来介绍排序二叉树的一些基本概念和算法. 基本概念 先来说树的概念,现实中,树是从下往上长的,树会分叉,在计算机程序中,一般而言,与现实相反,树是从上往下长的,也会分叉,有个根节点,每个节点可以有一个或多个孩子节点,没有孩子节点

一步一步写算法(之合并排序)

原文:一步一步写算法(之合并排序) [ 声明:版权所有,欢迎转载,请勿用于商业用途.  联系信箱:feixiaoxing @163.com] 前面一篇博客提到的快速排序是排序算法中的一种经典算法.和快速排序一样,合并排序是另外一种经常使用的排序算法.那么合并排序算法有什么不同呢?关键之处就体现在这个合并上面. 合并算法的基本步骤如下所示: 1)把0~length-1的数组分成左数组和右数组 2)对左数组和右数组进行迭代排序 3)将左数组和右数组进行合并,那么生成的整个数组就是有序的数据数组 下面

一步一步写算法(之链表排序)

原文:一步一步写算法(之链表排序) [ 声明:版权所有,欢迎转载,请勿用于商业用途.  联系信箱:feixiaoxing @163.com] 相比较线性表的排序而言,链表排序的内容稍微麻烦一点.一方面,你要考虑数据插入的步骤:另外一方面你也要对指针有所顾虑.要是有一步的内容错了,那么操作系统会马上给你弹出一个exception.就链表的特殊性而言,适合于链表的排序有哪些呢? (1)插入排序    (适合) (2)冒泡排序    (适合) (3)希尔排序    (适合) (4)选择排序    (适

一步一步写算法(之排序二叉树线索化)

原文:一步一步写算法(之排序二叉树线索化) [ 声明:版权所有,欢迎转载,请勿用于商业用途.  联系信箱:feixiaoxing @163.com] 前面我们谈到了排序二叉树,还没有熟悉的同学可以看一下这个,二叉树基本操作.二叉树插入.二叉树删除1.删除2.删除3.但是排序二叉树也不是没有缺点,比如说,如果我们想在排序二叉树中删除一段数据的节点怎么办呢?按照现在的结构,我们只能一个一个数据查找验证,首先看看在不在排序二叉树中,如果在那么删除:如果没有这个数据,那么继续查找.那么有没有方法,可以保