Linux 2.6 内核阅读笔记 内存管理

2014年7月29日 buddy分配算法

内核需要为分配一组连续的页框提供一种健壮、高效的分配策略。分配连续的页框必须解决内存管理中的外碎片(external fragmentation)。频繁的请求和释放不同大小的一组连续页框,必然导致分配页框的块分算来许多小块的空闲页框无法被一次性大量分配使用。

linux内核采用著名的伙伴系统算法来解决外碎片问题。该算法的核心思想是把所有的空闲页框分成11个链块表。每个链块表的大小分别为1,2,4,8,16,32,64,128,256,512和1024个连续的页框。

每个块b可以被分成两块b1和b2,假设b1的索引为bi1,b2的索引为bi2,并且由于是块内页框是连续的,则可以对bi1进行与(1<<order(2^order为b块的页框数))异或操作得到bi2,bi2也可以通过相同的方式得到bi1。

每个块的第一个页框物理地址应该是该块大小的整数倍。例如大小为16个页框的块,其起始地址应该为16*2^12(2^12为一个页框大小,4K)的倍数。假设要请求256个页框的块,算法先在256个页框的链表中检查是否有一个空闲块。如果没有,查找下一个更大的页框,也就是512个页框的链表。如果在512个页框的链表里存在这样的块,就把512个页框的块等分成两分,一份用于满足请求,一份插入到256个页框的链表中。如果在512个页框的链表里没有这样的块,就在1024个页框的链表中找。如果1024个页框的链表中有这样的块,就把1024个页框的256个页用于满足请求,把剩余的768个页框中的512个页框块放到大小为512个页框的链表中,并把剩余的256个页框块放入到256个页框的链表中。如果1024个页框的链表里也没有这样的块,分配失败,返回NULL。
  在释放的时候通过把页框的索引进行异或操作得到伙伴的索引,通过将伙伴从它目前所在的链表中删除掉达到和伙伴合并的效果。

Linux 2.6 内核阅读笔记 内存管理

时间: 2024-10-17 22:23:43

Linux 2.6 内核阅读笔记 内存管理的相关文章

Linux 2.6 内核阅读笔记 信号

2014年8月3日 信号处理程序调用过程 当一个进程接收到一个信号时,需要暂停进程执行转去执行专门的信号处理函数(如果定义了这个信号的专门处理函数的话),然后再继续执行进程代码. 所有的信号处理都是通过内核函数do_signal进行的,do_signal如果发现需要处理的信号,并且这个信号有专门的处理函数,就需要调用这个用户态的函数,这是通过handle_signal来处理的.执行信号处理函数是非常复杂的任务,因为在用户态和内核态来回切换需要特别谨慎地处理栈里的内容,在当前进程恢复"正常&quo

Linux 2.6 内核阅读笔记 中断和异常

2014年7月24日 中断门.陷阱门及中断门 中断是可以禁止的,可以通过告诉PIC停止对某个中断的发布.被禁止的中断是不会丢失的,在解除禁止后又会发送到CPU上. 禁止中断和屏蔽(mask)中断的不同之处是屏蔽是忽略掉某个中断,而禁止相当于延迟发送. Intel提供了三种类型的中断描述符:任务门.中断门及陷阱门描述.linux使用与inten稍有不同的细分分类和术语,把他们进行如下分类: 中断门:用户态进程不能访问的一个intel中断门(DPL为0),所有的linux中断处理程序都通过中断门在内

[转]linux内核分析笔记----内存管理

转自:http://blog.csdn.net/Baiduluckyboy/article/details/9667933 内存管理,不用多说,言简意赅.在内核里分配内存还真不是件容易的事情,根本上是因为内核不能想用户空间那样奢侈的使用内存. 先来说说内存管理.内核把物理页作为内存管理的基本单位.尽管处理器的最小可寻址单位通常是字,但是,内存管理单元MMU通常以页为单位进行处理.因此,从虚拟内存的交代来看,页就是最小单位.内核用struct  page(linux/mm.h)结构表示系统中的每个

Linux 2.6 内核阅读笔记 内核同步

2014年7月26日 内核抢占和内核控制路径的设计 内核抢占的一种定义:如果进程正在内核态执行内核函数时,允许发生内核切换(就是被替换的进程是内核函数所在进程),这个内核就是抢占的. linux内核提供了内核抢占的开启和关闭功能,在current_thread_info的preempt_count字段大于0时,内核就是不能抢占的.可以通过preempt_disable和preempt_enable来增加这个字段来控制这个开关. 中断和软中断和抢占的控制主要使用到current_thread_in

JVM学习笔记-内存管理

第一章 内存分配 1. 内存区域. 方法区和堆(线程共享),程序计数器 , VM栈 和 本地方法栈(线程隔离). 1) java虚拟机栈:线程私有.描述的是java方法执行的内存模型:栈帧,用户存储 局部变量表,操作数栈,动态链接,方法出口等信息. 局部变量表在编译时即可完全确定!如果线程请求的栈深度大于 规定的深度,StackOverflowError. 2) 本地方法栈,类似. 3)堆:垃圾收集器管理的主要区域.线程共享. 4)方法区: 各个线程共享.存储:加载的类信息,常量,静态变量,即时

linux内核探索之内存管理(四):对页表和页表项的操作

接上一节,主要参考<深入Linux内核架构>(3.3节),即linux-3.18.3 1. 对PTE的操作 最后一级页表中的项不仅包含了指向页的内存位置的指针,还在上述的多于比特位包含了与页有关的附加信息.尽管这些数据是特定于CPU的,它们至少提供了有关页访问控制的一些信息.下列位在linux内核支持的大多数CPU中都可以找到. arch/x86/include/asm/pgtable_types.h #define _PAGE_BIT_PRESENT 0 /* is present */ #

linux内核探索之内存管理(二):linux系统中的内存组织--结点、内存域和页帧

本文主要参考<深入linux内核架构>(3.2节)及Linux3.18.3内核源码 概述:本文主要描述了内存管理相关的数据结构:结点pg_data_t.内存域struct zone以及页帧(物理页):struct page ,以及该结构相关的一些基本概念. 1. 概述 内存划分为接点,每个结点关联到系统中的一个处理器,在内核中表示为pg_data_t. 各个结点又划分为内存域,比如DMA内存域,高端内存域,普通内存域. 内核内存域的宏: enum zone_type { #ifdef CONF

&lt;Linux内核源码&gt;内存管理模型

题外语:本人对linux内核的了解尚浅,如果有差池欢迎指正,也欢迎提问交流! 首先要理解一下每一个进程是如何维护自己独立的寻址空间的,我的电脑里呢是8G内存空间.了解过的朋友应该都知道这是虚拟内存技术解决的这个问题,然而再linux中具体是怎样的模型解决的操作系统的这个设计需求的呢,让我们从linux源码的片段开始看吧!(以下内核源码均来自fedora21 64位系统的fc-3.19.3版本内核) <include/linux/mm_type.h>中对于物理页面的定义struct page,也

Linux内核工程导论——内存管理(一)

Linux内存管理 概要 物理地址管理 很多小型操作系统,例如eCos,vxworks等嵌入式系统,程序中所采用的地址就是实际的物理地址.这里所说的物理地址是CPU所能见到的地址,至于这个地址如何映射到CPU的物理空间的,映射到哪里的,这取决于CPU的种类(例如mips或arm),一般是由硬件完成的.对于软件来说,启动时CPU就能看到一片物理地址.但是一般比嵌入式大一点的系统,刚启动时看到的已经映射到CPU空间的地址并不是全部的可用地址,需要用软件去想办法映射可用的物理存储资源到CPU地址空间.