Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 8992 Accepted Submission(s): 4359
Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle.
In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace
(spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will
be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
Sample Output
15
Source
最大连续子串和:
有串s,用一个临时变量t维护一个ans,若t>=0则加上s[i]可能会更好,于是有t+=s[i],
若t<0,则变成s[i]可能会更好,于是有t=s[i]
每次若大于ans,更新即可
最大子矩阵和:
有矩阵s,用一个临时数组a维护一个ans,每次a都记录s连续i行矩阵的和,
这样就可以当作最大连续子串处理,每次算出最大值更新ans,即可
#include<map> #include<string> #include<cstring> #include<cstdio> #include<cstdlib> #include<cmath> #include<queue> #include<vector> #include<iostream> #include<algorithm> #include<bitset> #include<climits> #include<list> #include<iomanip> #include<stack> #include<set> using namespace std; int a[110],pic[110][110]; int n; int sub() { int ans=INT_MIN,t=0; for(int i=0;i<n;i++) { if(t>=0) t+=a[i]; else t=a[i]; ans=max(ans,t); } return ans; } int matrix() { int ans=INT_MIN; for(int i=0;i<n;i++) { memset(a,0,sizeof(a)); for(int j=i;j<n;j++) { for(int k=0;k<n;k++) a[k]+=pic[j][k]; ans=max(ans,sub()); } } return ans; } int main() { while(cin>>n) { for(int i=0;i<n;i++) for(int j=0;j<n;j++) cin>>pic[i][j]; cout<<matrix()<<endl; } }