Java使用RSA加密算法对内容进行加密

什么是RSA加密算法

RSA是一种典型的非对称性加密算法,具体介绍可参考阮一峰的日志 RSA算法原理

下面是使用RSA算法对传输内容进行加密的一个简要Java案例,主要用到了三个类,大体实现如下:

对内容进行RSA加密和解密校验的类

import java.security.KeyFactory;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;

public class RSASignature {
    /**
     * 签名算法
     */
    public static final String SIGN_ALGORITHMS = "SHA1withRSA"; 

    /**
     * RSA签名
     * @param content 待签名数据
     * @param privateKey 商户私钥
     * @param encode 字符集编码
     * @return 签名值
     */
     public static String sign(String content, String privateKey, String encode)
     {
         try
         {
             PKCS8EncodedKeySpec priPKCS8    = new PKCS8EncodedKeySpec( Base64.decode(privateKey) );   

             KeyFactory keyf  = KeyFactory.getInstance("RSA");
             PrivateKey priKey = keyf.generatePrivate(priPKCS8);  

             java.security.Signature signature = java.security.Signature.getInstance(SIGN_ALGORITHMS);  

             signature.initSign(priKey);
             signature.update( content.getBytes(encode)); 

             byte[] signed = signature.sign();  

             return Base64.encode(signed);
         }
         catch (Exception e)
         {
             e.printStackTrace();
         }  

         return null;
     }  

     public static String sign(String content, String privateKey)
     {
         try
         {
             PKCS8EncodedKeySpec priPKCS8    = new PKCS8EncodedKeySpec( Base64.decode(privateKey) );
             KeyFactory keyf = KeyFactory.getInstance("RSA");
             PrivateKey priKey = keyf.generatePrivate(priPKCS8);
             java.security.Signature signature = java.security.Signature.getInstance(SIGN_ALGORITHMS);
             signature.initSign(priKey);
             signature.update( content.getBytes());
             byte[] signed = signature.sign();
             return Base64.encode(signed);
         }
         catch (Exception e)
         {
             e.printStackTrace();
         }
         return null;
     }  

     /**
     * RSA验签名检查
     * @param content 待签名数据
     * @param sign 签名值
     * @param publicKey 分配给开发商公钥
     * @return 布尔值
     */
     public static boolean doCheck(String content, String sign, String publicKey)
     {
         try
         {
             KeyFactory keyFactory = KeyFactory.getInstance("RSA");
             byte[] encodedKey = Base64.decode(publicKey);
             PublicKey pubKey = keyFactory.generatePublic(new X509EncodedKeySpec(encodedKey));  

             java.security.Signature signature = java.security.Signature
             .getInstance(SIGN_ALGORITHMS);  

             signature.initVerify(pubKey);
             signature.update( content.getBytes() );  

             boolean bverify = signature.verify( Base64.decode(sign) );
             return bverify;  

         }
         catch (Exception e)
         {
             e.printStackTrace();
         }  

         return false;
     }  

}

Base64基础类

public class Base64 {
	static private final int     BASELENGTH           = 128;
    static private final int     LOOKUPLENGTH         = 64;
    static private final int     TWENTYFOURBITGROUP   = 24;
    static private final int     EIGHTBIT             = 8;
    static private final int     SIXTEENBIT           = 16;
    static private final int     FOURBYTE             = 4;
    static private final int     SIGN                 = -128;
    static private final char    PAD                  = ‘=‘;
    static private final boolean fDebug               = false;
    static final private byte[]  base64Alphabet       = new byte[BASELENGTH];
    static final private char[]  lookUpBase64Alphabet = new char[LOOKUPLENGTH];  

    static {
        for (int i = 0; i < BASELENGTH; ++i) {
            base64Alphabet[i] = -1;
        }
        for (int i = ‘Z‘; i >= ‘A‘; i--) {
            base64Alphabet[i] = (byte) (i - ‘A‘);
        }
        for (int i = ‘z‘; i >= ‘a‘; i--) {
            base64Alphabet[i] = (byte) (i - ‘a‘ + 26);
        }  

        for (int i = ‘9‘; i >= ‘0‘; i--) {
            base64Alphabet[i] = (byte) (i - ‘0‘ + 52);
        }  

        base64Alphabet[‘+‘] = 62;
        base64Alphabet[‘/‘] = 63;  

        for (int i = 0; i <= 25; i++) {
            lookUpBase64Alphabet[i] = (char) (‘A‘ + i);
        }  

        for (int i = 26, j = 0; i <= 51; i++, j++) {
            lookUpBase64Alphabet[i] = (char) (‘a‘ + j);
        }  

        for (int i = 52, j = 0; i <= 61; i++, j++) {
            lookUpBase64Alphabet[i] = (char) (‘0‘ + j);
        }
        lookUpBase64Alphabet[62] = (char) ‘+‘;
        lookUpBase64Alphabet[63] = (char) ‘/‘;  

    }  

    private static boolean isWhiteSpace(char octect) {
        return (octect == 0x20 || octect == 0xd || octect == 0xa || octect == 0x9);
    }  

    private static boolean isPad(char octect) {
        return (octect == PAD);
    }  

    private static boolean isData(char octect) {
        return (octect < BASELENGTH && base64Alphabet[octect] != -1);
    }  

    /**
     * Encodes hex octects into Base64
     *
     * @param binaryData Array containing binaryData
     * @return Encoded Base64 array
     */
    public static String encode(byte[] binaryData) {  

        if (binaryData == null) {
            return null;
        }  

        int lengthDataBits = binaryData.length * EIGHTBIT;
        if (lengthDataBits == 0) {
            return "";
        }  

        int fewerThan24bits = lengthDataBits % TWENTYFOURBITGROUP;
        int numberTriplets = lengthDataBits / TWENTYFOURBITGROUP;
        int numberQuartet = fewerThan24bits != 0 ? numberTriplets + 1 : numberTriplets;
        char encodedData[] = null;  

        encodedData = new char[numberQuartet * 4];  

        byte k = 0, l = 0, b1 = 0, b2 = 0, b3 = 0;  

        int encodedIndex = 0;
        int dataIndex = 0;
        if (fDebug) {
            System.out.println("number of triplets = " + numberTriplets);
        }  

        for (int i = 0; i < numberTriplets; i++) {
            b1 = binaryData[dataIndex++];
            b2 = binaryData[dataIndex++];
            b3 = binaryData[dataIndex++];  

            if (fDebug) {
                System.out.println("b1= " + b1 + ", b2= " + b2 + ", b3= " + b3);
            }  

            l = (byte) (b2 & 0x0f);
            k = (byte) (b1 & 0x03);  

            byte val1 = ((b1 & SIGN) == 0) ? (byte) (b1 >> 2) : (byte) ((b1) >> 2 ^ 0xc0);
            byte val2 = ((b2 & SIGN) == 0) ? (byte) (b2 >> 4) : (byte) ((b2) >> 4 ^ 0xf0);
            byte val3 = ((b3 & SIGN) == 0) ? (byte) (b3 >> 6) : (byte) ((b3) >> 6 ^ 0xfc);  

            if (fDebug) {
                System.out.println("val2 = " + val2);
                System.out.println("k4   = " + (k << 4));
                System.out.println("vak  = " + (val2 | (k << 4)));
            }  

            encodedData[encodedIndex++] = lookUpBase64Alphabet[val1];
            encodedData[encodedIndex++] = lookUpBase64Alphabet[val2 | (k << 4)];
            encodedData[encodedIndex++] = lookUpBase64Alphabet[(l << 2) | val3];
            encodedData[encodedIndex++] = lookUpBase64Alphabet[b3 & 0x3f];
        }  

        // form integral number of 6-bit groups
        if (fewerThan24bits == EIGHTBIT) {
            b1 = binaryData[dataIndex];
            k = (byte) (b1 & 0x03);
            if (fDebug) {
                System.out.println("b1=" + b1);
                System.out.println("b1<<2 = " + (b1 >> 2));
            }
            byte val1 = ((b1 & SIGN) == 0) ? (byte) (b1 >> 2) : (byte) ((b1) >> 2 ^ 0xc0);
            encodedData[encodedIndex++] = lookUpBase64Alphabet[val1];
            encodedData[encodedIndex++] = lookUpBase64Alphabet[k << 4];
            encodedData[encodedIndex++] = PAD;
            encodedData[encodedIndex++] = PAD;
        } else if (fewerThan24bits == SIXTEENBIT) {
            b1 = binaryData[dataIndex];
            b2 = binaryData[dataIndex + 1];
            l = (byte) (b2 & 0x0f);
            k = (byte) (b1 & 0x03);  

            byte val1 = ((b1 & SIGN) == 0) ? (byte) (b1 >> 2) : (byte) ((b1) >> 2 ^ 0xc0);
            byte val2 = ((b2 & SIGN) == 0) ? (byte) (b2 >> 4) : (byte) ((b2) >> 4 ^ 0xf0);  

            encodedData[encodedIndex++] = lookUpBase64Alphabet[val1];
            encodedData[encodedIndex++] = lookUpBase64Alphabet[val2 | (k << 4)];
            encodedData[encodedIndex++] = lookUpBase64Alphabet[l << 2];
            encodedData[encodedIndex++] = PAD;
        }  

        return new String(encodedData);
    }  

    /**
     * Decodes Base64 data into octects
     *
     * @param encoded string containing Base64 data
     * @return Array containind decoded data.
     */
    public static byte[] decode(String encoded) {  

        if (encoded == null) {
            return null;
        }  

        char[] base64Data = encoded.toCharArray();
        // remove white spaces
        int len = removeWhiteSpace(base64Data);  

        if (len % FOURBYTE != 0) {
            return null;//should be divisible by four
        }  

        int numberQuadruple = (len / FOURBYTE);  

        if (numberQuadruple == 0) {
            return new byte[0];
        }  

        byte decodedData[] = null;
        byte b1 = 0, b2 = 0, b3 = 0, b4 = 0;
        char d1 = 0, d2 = 0, d3 = 0, d4 = 0;  

        int i = 0;
        int encodedIndex = 0;
        int dataIndex = 0;
        decodedData = new byte[(numberQuadruple) * 3];  

        for (; i < numberQuadruple - 1; i++) {  

            if (!isData((d1 = base64Data[dataIndex++])) || !isData((d2 = base64Data[dataIndex++]))
                || !isData((d3 = base64Data[dataIndex++]))
                || !isData((d4 = base64Data[dataIndex++]))) {
                return null;
            }//if found "no data" just return null  

            b1 = base64Alphabet[d1];
            b2 = base64Alphabet[d2];
            b3 = base64Alphabet[d3];
            b4 = base64Alphabet[d4];  

            decodedData[encodedIndex++] = (byte) (b1 << 2 | b2 >> 4);
            decodedData[encodedIndex++] = (byte) (((b2 & 0xf) << 4) | ((b3 >> 2) & 0xf));
            decodedData[encodedIndex++] = (byte) (b3 << 6 | b4);
        }  

        if (!isData((d1 = base64Data[dataIndex++])) || !isData((d2 = base64Data[dataIndex++]))) {
            return null;//if found "no data" just return null
        }  

        b1 = base64Alphabet[d1];
        b2 = base64Alphabet[d2];  

        d3 = base64Data[dataIndex++];
        d4 = base64Data[dataIndex++];
        if (!isData((d3)) || !isData((d4))) {//Check if they are PAD characters
            if (isPad(d3) && isPad(d4)) {
                if ((b2 & 0xf) != 0)//last 4 bits should be zero
                {
                    return null;
                }
                byte[] tmp = new byte[i * 3 + 1];
                System.arraycopy(decodedData, 0, tmp, 0, i * 3);
                tmp[encodedIndex] = (byte) (b1 << 2 | b2 >> 4);
                return tmp;
            } else if (!isPad(d3) && isPad(d4)) {
                b3 = base64Alphabet[d3];
                if ((b3 & 0x3) != 0)//last 2 bits should be zero
                {
                    return null;
                }
                byte[] tmp = new byte[i * 3 + 2];
                System.arraycopy(decodedData, 0, tmp, 0, i * 3);
                tmp[encodedIndex++] = (byte) (b1 << 2 | b2 >> 4);
                tmp[encodedIndex] = (byte) (((b2 & 0xf) << 4) | ((b3 >> 2) & 0xf));
                return tmp;
            } else {
                return null;
            }
        } else { //No PAD e.g 3cQl
            b3 = base64Alphabet[d3];
            b4 = base64Alphabet[d4];
            decodedData[encodedIndex++] = (byte) (b1 << 2 | b2 >> 4);
            decodedData[encodedIndex++] = (byte) (((b2 & 0xf) << 4) | ((b3 >> 2) & 0xf));
            decodedData[encodedIndex++] = (byte) (b3 << 6 | b4);  

        }  

        return decodedData;
    }  

    /**
     * remove WhiteSpace from MIME containing encoded Base64 data.
     *
     * @param data  the byte array of base64 data (with WS)
     * @return      the new length
     */
    private static int removeWhiteSpace(char[] data) {
        if (data == null) {
            return 0;
        }  

        // count characters that‘s not whitespace
        int newSize = 0;
        int len = data.length;
        for (int i = 0; i < len; i++) {
            if (!isWhiteSpace(data[i])) {
                data[newSize++] = data[i];
            }
        }
        return newSize;
    }
}

在过滤器的Request中对加签的请求进行验签,在Response中对返回的参数加签。

import java.nio.charset.Charset;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Value;
import com.alibaba.fastjson.JSONObject;

public class ChannelSignature implements ServletChannelInterceptor{

	private final static Logger logger = (Logger) LoggerFactory.getLogger(ChannelSignature.class);

	private static final String DEFAULT_CHARSET = "UTF-8";

	/是否签名验签,true:验签 ,false:不进行验签/
	private boolean verifySignFlag;

	/私钥路径/
	@Value("${privateKey}")
	private String privateKey;

	/公钥路径/
	@Value("${publicKey}")
	private String publicKey;

	@Override
	public void onRequest(ChannelContext<HttpServletRequest, HttpServletResponse> channelContext, ContextEx contextEx)
			throws FcsiException{
		if(!verifySignFlag){logger.debug("don‘t need verif");return;}
		Object object = channelContext.getRequestPayload();
		String json = new String((byte[])object,Charset.forName(DEFAULT_CHARSET));
		JSONObject jsonObject = JSONObject.parseObject(json);
		String requestParamStr = jsonObject.getString("requestData");
		String vSign = jsonObject.getString("sign");
		logger.debug("verif sign begin ... ... requestParamStr:{}   signStr:{}",requestParamStr,vSign);

		Boolean verifResult = RSASignature.doCheck(requestParamStr, vSign, publicKey);
		if(!verifResult){throw new SignatureException(MsgConstants.IFP_230002,"验签异常");}
		logger.debug("verif sign end ... ...    signResult:{}",verifResult);
	}

	@Override
	public void onResponse(ChannelContext<HttpServletRequest, HttpServletResponse> channelContext, ContextEx contextEx,
			Throwable ex) {
		JSONObject jsonObject = null;
		if(ex instanceof SignatureException ){jsonObject = getSignatureExceptionRespData(ex); sign(channelContext,jsonObject);return;}
		Object object = channelContext.getResponsePalyload();
		if(null == object){logger.debug("responsePalyload is null");return;}
		String json = new String((byte[])object,Charset.forName("UTF8"));
		jsonObject = JSONObject.parseObject(json);
		sign(channelContext,jsonObject);
	}

	/**
	 * 对响应数据进行签名,并将响应结果放至ResponsePayload
	 * @param channelContext
	 * @param jsonObject
	 */
	private void sign(ChannelContext<HttpServletRequest, HttpServletResponse> channelContext, JSONObject jsonObject) {
		String responseParamStr = jsonObject.getString("responseData");
		logger.debug("generate sign begin ... ... signParamStr:{}",responseParamStr);
		String sign=RSASignature.sign(responseParamStr,privateKey); //对原始报文进行签名
		logger.debug("generate sign end ... ... signStr:{}",sign);
		jsonObject.put("sign", sign);  String str = jsonObject.toString();
		channelContext.setResponsePayload((Object)str.getBytes(Charset.forName(DEFAULT_CHARSET)));
	}

	/**
	 * 组装签名异常响应数据
	 * @param ex
	 * @return
	 */
	private JSONObject getSignatureExceptionRespData(Throwable ex) {
		String code = ((SignatureException) ex).getCode();
	    String defaultMessage = ((SignatureException) ex).getMessage();
	    String[]  errMessageStr= defaultMessage.split("]"); String msg = errMessageStr[1];
	    JSONObject jsonObject = new JSONObject();jsonObject.put("code", code); jsonObject.put("msg", msg);
	    JSONObject respJsonObject = new JSONObject(); respJsonObject.put("responseData", jsonObject);
		return respJsonObject;
	}

	public boolean isVerifySignFlag() {
		return verifySignFlag;
	}

	public void setVerifySignFlag(boolean verifySignFlag) {
		this.verifySignFlag = verifySignFlag;
	}

}
时间: 2024-11-05 12:16:27

Java使用RSA加密算法对内容进行加密的相关文章

JAVA的RSA加密算法工具类

需要用到一个jar http://www.bouncycastle.org/latest_releases.html 需要注意的问题 JS用同一秘钥生成的密文用java解密出来是逆序的,即js加密123456用java解密出来是654321,原因未知,需要解密js加密的密文请使用后缀为byJs的方法. HexUtil.java > 1]; // two characters form the hex value. for (int i = 0, j = 0; j >> 4]; out[j

Java培训 关于RSA加密算法有哪些应用呢?

Java培训 关于RSA加密算法有哪些应用呢? RSA加密算法是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的绝大多数密码攻击. Java培训关于RSA加密算法有哪些应用呢?以下举一个数据库身份验证的案例. 在使用数据集进行身份认证时,密码存在数据库中,认证时用户输入的密码与数据库中密码相同则认证通过,若数据库被破解了则对系统造成威胁,怎样保证系统安全呢?这里就可以应用RSA加密算法,对权限加密. 思路: 就是在url中传用户名密码时,先把用户名进行翻转,然后再进行加密,如输入的密码为

RSA加密算法的简单案例

RSA加密算法是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的绝大多数密码攻击. 那关于RSA加密算法有哪些应用呢?以下举一个数据库身份验证的案例. 在使用数据集进行身份认证时,密码存在数据库中,认证时用户输入的密码与数据库中密码相同则认证通过,若数据库被破解了则对系统造成威胁,怎样保证系统安全呢?这里就可以应用RSA加密算法,对权限加密. 思路: 就是在url中传用户名密码时,先把用户名进行翻转,然后再进行加密,如输入的密码为12,实际后台进行加密的值为21,再与数据库进行验证,这样

JAVA实现RSA加密解密 非对称算法

首先RSA是一个非对称的加密算法,所以在使用该算法加密解密之前,必须先行生成密钥对,包括公钥和私钥 JDK中提供了生成密钥对的类KeyPairGenerator,实例如下: public static Map<String, Object> genKeyPair() throws Exception { // 获取公钥私钥密钥对的生成器 KeyPairGenerator kpg = KeyPairGenerator.getInstance("RSA"); // 初始化确定密

Java前端Rsa公钥加密,后端Rsa私钥解密(目前还不支持中文加密解密,其他都行)

Base64工具类,可以让rsa编码的乱码变成一串字符序列 1 package com.utils; 2 3 import java.io.ByteArrayInputStream; 4 import java.io.ByteArrayOutputStream; 5 import java.io.File; 6 import java.io.FileInputStream; 7 import java.io.FileOutputStream; 8 import java.io.InputStre

RSA加密算法的加密与解密

转发原文链接:RSA加密算法加密与解密过程解析 1.加密算法概述 加密算法根据内容是否可以还原分为可逆加密和非可逆加密. 可逆加密根据其加密解密是否使用的同一个密钥而可以分为对称加密和非对称加密. 所谓对称加密即是指在加密和解密时使用的是同一个密钥:举个简单的例子,对一个字符串C做简单的加密处理,对于每个字符都和A做异或,形成密文S.解密的时候再用密文S和密钥A做异或,还原为原来的字符串C.这种加密方式有一个很大的缺点就是不安全,因为一旦加密用的密钥泄露了之后,就可以用这个密钥破解其他所有的密文

Java RSA加密算法生成公钥和私钥

原文:http://jingyan.baidu.com/article/6dad5075f33466a123e36ecb.html?qq-pf-to=pcqq.c2c 目前为止,RSA是应用最多的公钥加密算法,能够抵抗已知的绝大多数密码攻击,已被ISO推荐为公钥数据加密标准. RSA算法中,每个通信主体都有两个钥匙,一个公钥(Public Key)用来对数据进行加密: 一个私钥(Private Key)用来对数据进行解密. 下面来看下Java中是如何使用KeyPairGenerator生成key

RSA加密算法加密与解密过程解析

1.加密算法概述 加密算法根据内容是否可以还原分为 可逆加密和非可逆加密 . 可逆加密根据其加密解密是否使用的同一个密钥而可以分为 对称加密和非对称加密. 所谓对称加密即是指在加密和解密时使用的是同一个密钥:举个简单的例子,对一个字符串C做简单的加密处理,对于每个字符都和A做异或,形成密文S.解密的时候再用密文S和密钥A做异或,还原为原来的字符串C.这种加密方式有一个很大的缺点就是不安全,因为一旦加密用的密钥泄露了之后,就可以用这个密钥破解其他所有的密文. 非对称加密在加密和解密过程中使用不同的

java RSA加密算法

[转]RSA加密算法 RSA公钥加密算法是1977年由Ron Rivest.Adi Shamirh和LenAdleman在(美国麻省理工学院)开发的.RSA取名来自开发他们三者的名字.RSA是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的所有密码攻击,已被ISO推荐为公钥数据加密标准.RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但那时想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥. RSA公开密钥密码体制.所谓的公开密钥密码体制就是使用不同的加密