SMO算法(转)

作者:[已重置]
链接:https://www.zhihu.com/question/40546280/answer/88539689
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

SMO(Sequential Minimal Optimization)是针对求解SVM问题的Lagrange对偶问题,一个二次规划式,开发的高效算法。传统的二次规划算法的计算开销正比于训练集的规模,而SMO基于问题本身的特性(KKT条件约束)对这个特殊的二次规划问题的求解过程进行优化。对偶问题中我们最后求解的变量只有Lagrange乘子向量,这个算法的基本思想就是每次都只选取一对,固定向量其他维度的元素的值,然后进行优化,直至收敛。

SMO干了什么?
首先,整个对偶问题的二次规划表达如下:

SMO在整个二次规划的过程中也没干别的,总共干了两件事:

  • 选取一对参数
  • 固定向量的其他参数,将代入上述表达式进行求最优解获得更新后的

SMO不断执行这两个步骤直至收敛。

因为有约束存在,实际上的关系也可以确定。这两个参数的和或者差是一个常数。

所以虽然宣传上说是选择了一对,但还是选择了其中一个,将另一个写作关于它的表达式代入目标函数求解。

为什么SMO跑的那么快,比提出之前的算法不知道高到哪里去了?
正如上面提到的,在固定其他参数以后,这就是一个单变量二次规划问题,仅有的约束也是这个变量,显然有闭式解。不必再调用数值优化算法。

KKT条件是对偶问题最优解的必要条件

除了第一个非负约束以外,其他约束都是根据目标函数推导得到的最优解必须满足的条件,如果违背了这些条件,那得到的解必然不是最优的,目标函数的值会减小。

所以在SMO迭代的两个步骤中,只要中有一个违背了KKT条件,这一轮迭代完成后,目标函数的值必然会增大。Generally speaking,KKT条件违背的程度越大,迭代后的优化效果越明显,增幅越大。

怎样跑的更快?
和梯度下降类似,我们要找到使之优化程度最大的方向(变量)进行优化。所以SMO先选取违背KKT条件程度最大的变量,那么第二个变量应该选择使目标函数值增大最快的变量,但是这个变量怎么找呢?比较各变量优化后对应的目标函数值的变化幅度?这个样子是不行的,复杂度太高了。

SMO使用了一个启发式的方法,当确定了第一个变量后,选择使两个变量对应样本之间最大的变量作为第二个变量。直观来说,更新两个差别很大的变量,比起相似的变量,会带给目标函数更大的变化。间隔的定义也可以借用偏差函数

我们要找的也就是使对于来说使最大的

很惭愧,只做了一点微小的工作。

References
[1] Platt, John. "Sequential minimal optimization: A fast algorithm for training support vector machines." (1998).

时间: 2024-08-11 07:49:47

SMO算法(转)的相关文章

关于SVM数学细节逻辑的个人理解(三) :SMO算法理解

第三部分:SMO算法的个人理解 接下来的这部分我觉得是最难理解的?而且计算也是最难得,就是SMO算法. SMO算法就是帮助我们求解: s.t.   这个优化问题的. 虽然这个优化问题只剩下了α这一个变量,但是别忘了α是一个向量,有m个αi等着我们去优化,所以还是很麻烦,所以大神提出了SMO算法来解决这个优化问题. 关于SMO最好的资料还是论文<Sequential Minimal Optimization A Fast Algorithm for Training Support Vector

smo算法matlab实现

看完CSDN上结构之法,算法之道的支持向量机通俗导论(理解SVM的三层境界) http://blog.csdn.net/v_july_v/article/details/7624837 参考了台湾的林智仁教授写了一个封装SVM算法的libsvm库,下载地址: http://www.csie.ntu.edu.tw/~cjlin/libsvm/,此外下载了一份libsvm的注释文档,下载地址: http://www.pami.sjtu.edu.cn/people/gpliu/document/lib

SVM之SMO算法(转)

支持向量机(Support Vector Machine)-----SVM之SMO算法(转) 此文转自两篇博文 有修改 序列最小优化算法(英语:Sequential minimal optimization, SMO)是一种用于解决支持向量机训练过程中所产生优化问题的算法.SMO由微软研究院的约翰·普莱特(John Platt)发明于1998年,目前被广泛使用于SVM的训练过程中,并在通行的SVM库libsvm中得到实现. 1998年,SMO算法发表在SVM研究领域内引起了轰动,因为先前可用的S

支持向量机(SVM)(五)-- SMO算法详解

一.我们先回顾下SVM问题. A.线性可分问题 1.SVM基本原理: SVM使用一种非线性映射,把原训练            数据映射到较高的维.在新的维上,搜索最佳分离超平面,两个类的数据总可以被超平面分开. 2.问题的提出: 3.如何选取最优的划分直线f(x)呢? 4.求解:凸二次规划 建立拉格朗日函数: 求偏导数: B.线性不可分问题 1.核函数 如下图:横轴上端点a和b之间红色部分里的所有点定为正类,两边的黑色部分里的点定为负类. 设: g(x)转化为f(y)=<a,y> g(x)=

【机器学习算法-python实现】svm支持向量机(2)—简化版SMO算法

(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景知识 通过上一节我们通过引入拉格朗日乗子得到支持向量机变形公式.详细变法可以参考这位大神的博客--地址 参照拉格朗日公式F(x1,x2,...λ)=f(x1,x2,...)-λg(x1,x2...).我们把上面的式子变型为: 约束条件就变成了: 下面就根据最小优化算法SMO(Sequential Minimal Optimization).找出距离分隔面最近的点,也就是支持向量集.如下图的蓝色点所示.

&lt;转&gt;SVM实现之SMO算法

转自http://blog.csdn.net/zouxy09/article/details/17292011 终于到SVM的实现部分了.那么神奇和有效的东西还得回归到实现才可以展示其强大的功力.SVM有效而且存在很高效的训练算法,这也是工业界非常青睐SVM的原因. 前面讲到,SVM的学习问题可以转化为下面的对偶问题: 需要满足的KKT条件: 也就是说找到一组αi可以满足上面的这些条件的就是该目标的一个最优解.所以我们的优化目标是找到一组最优的αi*.一旦求出这些αi*,就很容易计算出权重向量w

[笔记]关于支持向量机(SVM)中 SMO算法的学习(一)理论总结

1. 前言 最近又重新复习了一遍支持向量机(SVM).其实个人感觉SVM整体可以分成三个部分: 1. SVM理论本身:包括最大间隔超平面(Maximum Margin Classifier),拉格朗日对偶(Lagrange Duality),支持向量(Support Vector),核函数(Kernel)的引入,松弛变量的软间隔优化(Outliers),最小序列优化(Sequential Minimal Optimization)等. 2. 核方法(Kernel):其实核方法的发展是可以独立于S

支持向量机原理(四)SMO算法原理

支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理 支持向量机原理(五)线性支持回归(待填坑) 在SVM的前三篇里,我们优化的目标函数最终都是一个关于\alpha向量的函数.而怎么极小化这个函数,求出对应的\alpha向量,进而求出分离超平面我们没有讲.本篇就对优化这个关于\alpha向量的函数的SMO算法做一个总结. 1. 回顾SVM优化目标函数 我们首先回顾下我们的

理解支持向量机(三)SMO算法

在支持向量机模型的求解中,我们用到了SMO算法来求解向量α. 那么什么是SMO算法?在讲SMO算法之前.我们须要先了解下面坐标上升法. 1.坐标上升法 如果有优化问题: W是α向量的函数.利用坐标上升法(当然,求目标函数的最小时即为坐标下降法)求解问题最优的步骤例如以下: 算法的思想为:每次仅仅考虑一个变量进行优化,将其它变量固定.这时整个函数能够看作仅仅关于该变量的函数,能够对其直接求导计算. 然后继续求其它分变量的值,整个内循环下来就得到了α的一组值,若该组值满足条件.即为我们求的值,否则继

SMO算法总结

1.概述 SMO(Sequentil Minimal Optimization)算法在支持向量机中用来求解对偶问题,即 min 12∑Ni=1∑Nj=1αiαjyiyjK(xi,xj)?∑Ni=1αi s.t.∑αiyi=0 0?αiyi?C 在这个问题中,变量是拉格朗日乘子α,一个αi对应一个样本点(xi,yi),变量总数等于样本数量N. SMO算法是一个启发式的算法,它的基本思路是:如果所有变量的解都满足KKT条件,即: ?????????????????αi≥0yif(xi)?1+ξ≥0α