poj3071_概率dp

题目链接:http://poj.org/problem?id=3071

题意:

有2^n次方个队,已知任意两个队之间每个队获胜的概率,比赛的规则相邻的两个队伍之间比赛,赢的继续下一轮,输的直接淘汰(相邻的两个队伍是指,  1,2     3,4    5,6.......也就是说2和3 不比赛。如果1,2中假设1赢了,1再跟3,4中的赢家比赛,这样最后赢的那个队一共打了n场比赛。

我们用dp[ i ][ j ]表示j参加的第i场比赛赢的概率,那么有 递推方程  dp [ i ] [ j ]  =   dp [ i -1  ] [ j ] *dp [ i -1 ] [ k ] *p [ j ] [ k ],j参加的第i场比赛赢,那么 j参加的第i-1场比赛肯定赢,所以有dp[i-][j] ,  第i场比赛j的对手是k,j赢,所以有 p[ j ] [ k ], 那么既然k也能够打到第i场比赛,那说明k打的第i-1场比赛也一定赢,所以有 dp[ i-1 ] [ k ].

问题是k如果表示,自己想想咯

 1 #include <algorithm>
 2 #include <iostream>
 3 #include <cstdlib>
 4 #include <cstring>
 5 #include <cstdio>
 6 #include <vector>
 7 #include <cmath>
 8 #include <queue>
 9 #include <set>
10 #include <map>
11 #define INF 0x3f3f3f3f
12 using namespace std;
13 typedef long long LL;
14
15 double dp[8][1 << 7], p[1<<7][1<<7];
16 int main()
17 {
18     int n;
19     while(~scanf("%d", &n))
20     {
21         if(n == -1)
22             break;
23         for(int i = 0; i < (1 << n); i++)
24             for(int j = 0; j < (1 << n); j++)
25                 scanf("%lf", &p[i][j]);
26         memset(dp, 0, sizeof(dp));
27         for(int j = 0; j < (1<<n); j++)
28             dp[0][j] = 1;
29         for(int i = 1; i <= n; i++)
30         {
31             for(int j = 0; j < (1 << n); j++)
32             {
33                 int te = j / (1 << (i-1));
34                 te ^= 1;
35                 for(int k = te * (1 << (i-1)); k < te * (1 << (i-1)) + (1 << (i-1)); k++)
36                     dp[i][j] += dp[i - 1][j] * dp[i - 1][k] * p[j][k];
37             }
38         }
39         int res = 0;
40         double mm = 0;
41         for(int i = 0; i < (1 << n); i++)
42         {
43             if(mm < dp[n][i]){
44                 mm = dp[n][i];
45                 res = i + 1;
46             }
47         }
48         printf("%d\n", res);
49     }
50     return 0;
51 }

时间: 2024-09-29 08:49:36

poj3071_概率dp的相关文章

Codeforces 28C [概率DP]

/* 大连热身D题 题意: 有n个人,m个浴室每个浴室有ai个喷头,每个人等概率得选择一个浴室. 每个浴室的人都在喷头前边排队,而且每个浴室内保证大家都尽可能均匀得在喷头后边排队. 求所有浴室中最长队伍的期望. 思路: 概率dp dp[i][j][k]代表前i个浴室有j个人最长队伍是k的概率. 枚举第i个浴室的人数.然后转移的时候其实是一个二项分布. */ #include<bits/stdc++.h> using namespace std; int jilu[55]; double dp[

hdu 3076 ssworld VS DDD (概率dp)

///题意: /// A,B掷骰子,对于每一次点数大者胜,平为和,A先胜了m次A赢,B先胜了n次B赢. ///p1表示a赢,p2表示b赢,p=1-p1-p2表示平局 ///a赢得概率 比一次p1 两次p0*p1 三次 p0^2*p1,即A赢的概率为p1+p*p1+p^2*p1+...p^n*p1,n->无穷 ///即a_win=p1/(1-p);b_win=p2/(1-p); ///dp[i][j]表示a赢了j次,b赢了i次的概率 ///dp[i][j]=dp[i-1][j]*b_win+dp[

hdu 3853 概率DP 简单

http://acm.hdu.edu.cn/showproblem.php?pid=3853 题意:有R*C个格子,一个家伙要从(0,0)走到(R-1,C-1) 每次只有三次方向,分别是不动,向下,向右,告诉你这三个方向的概率,以及每走一步需要耗费两个能量,问你走到终点所需要耗费能量的数学期望: 回头再推次,思想跟以前的做过的类似 注意点:分母为0的处理 #include <cstdio> #include <cstring> #include <algorithm>

hdu4089(公式推导)概率dp

题意:有n人都是仙剑5的fans,现在要在官网上激活游戏,n个人排成一个队列(其中主角Tomato最初排名为m), 对于队列中的第一个人,在激活的时候有以下五种情况: 1.激活失败:留在队列中继续等待下一次激活(概率p1) 2.失去连接:激活失败,并且出队列然后排到队列的尾部(概率p2) 3.激活成功:出队列(概率p3) 4.服务器瘫:服务器停止服务了,所有人都无法激活了(概率p4) 求服务器瘫痪并且此时Tomato的排名<=k的概率. 解法:ans[i][j]表示i个人出于第j个位置要到目的状

poj3071(概率DP)

题意:淘汰赛制,2^n(n<=7)个队员.给出相互PK的输赢概率矩阵.问谁最有可能赢到最后. 解法:ans[i][j]表示第i个队员第j轮胜出的概率.赢到最后需要进行n场比赛.算出每个人赢到最后的ans[i][n].写出序号的二进制发现一个规律,两个队员i.j如果碰到,那么一定是在第get(i,j)场比赛碰到的.get(i,j)计算的是i和j二进制不同的最高位,这个规律也比较明显. 代码: /****************************************************

【Foreign】开锁 [概率DP]

开锁 Time Limit: 10 Sec  Memory Limit: 256 MB Description Input Output Sample Input 4 5 1 2 5 4 3 1 5 2 2 5 4 3 1 5 3 2 5 4 3 1 5 4 2 5 4 3 1 Sample Output 0.000000000 0.600000000 0.900000000 1.000000000 HINT Main idea 一个宝箱内有一个可以开启别的宝箱的钥匙,可以选择k个宝箱,询问能开

POJ 2151 Check the difficulty of problems (概率DP)

题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 ,求每队至少解出一题且冠军队至少解出N道题的概率. 析:概率DP,dp[i][j][k] 表示第 i 个队伍,前 j 个题,解出 k 个题的概率,sum[i][j] 表示第 i 个队伍,做出 1-j 个题的概率,ans1等于, T个队伍,至少解出一个题的概率,ans2 表示T个队伍,至少解出一个题,但不超过N-1个题的概率,最后用ans1-ans2即可. 代码如下: #pragma comment(linker, "/STA

UVALive 6672 Bonus Cards 概率dp

题意呢 就是有两种售票方式 一种是icpc 一种是其他方式 icpc抢票成功的概率是其他方式的2倍…… 这时 一个人出现了 他通过内幕知道了两种抢票方式各有多少人 他想知道自己如果用icpc抢票成功的概率是多少 用acm抢票成功的概率是多少…… 做过不多的概率dp 还在摸索…… dp[i][j]代表第i轮有j个icpc的人已经有票了…… 当然同时i-j个通过其他方式抢票的人也有票了 这就是用同样的函数搜两次的原理…… 优化一次i<=a 一次是把初始化放到for里…… 第一次见这么卡时间的题……

HDU 4599 Dice (概率DP+数学+快速幂)

题意:给定三个表达式,问你求出最小的m1,m2,满足G(m1) >= F(n), G(m2) >= G(n). 析:这个题是一个概率DP,但是并没有那么简单,运算过程很麻烦. 先分析F(n),这个用DP来推公式,d[i],表示抛 i 次连续的点数还要抛多少次才能完成.那么状态转移方程就是 d[i] = 1/6*(1+d[i+1]) + 5/6*(1+d[1]), 意思就是说在第 i 次抛和上次相同的概率是1/6,然后加上上次抛的和这一次,再加上和上次不同的,并且又得从第1次开始计算. 边界就是