[深度学习]Wake-Sleep算法

本文翻译自2007-To recognize shapes, first learn to generate images, Geoffrey Hinton.

第五种策略的设计思想是使得高层的特征提取器能够和底层的进行通信, 同时可以很容易地使用随机二态神经元的分层网络来实现.

这些神经元的激活概率是关于总输入的一个平滑非线性方程:

其中si和sj是神经元i和j的活跃度(activity), wij是i和j的权值, bj是j的偏置.

图1

如果训练数据是使用图1中类型的多层图像模型从上到下生成的, 则被用来从上到下(top-down)生成图像的隐层神经元的二进制状态就可以被用来作为它训练从下到上(bottom-up)认知权值(reco-weights)时的期望输出.

乍一看, 这种使用从上到下生成连接(generative connections)来给隐层神经元提供期望状态的想法是毫无意义的, 因为我们现在需要学习的是一个能够产生训练数据(training data)图模型(graphics model).

但是, 如果我们已经有了一些较好的认知连接(reco-connections), 我们就可以使用一种从下到上传播(pass) -- 用真实数据来激活每层的神经元从而我们就可以通过尝试从前一层的活跃度信息来重建每层的活跃度, 从而学习这个生成权值.

所以这就变成一个鸡与蛋的问题: 给定生成权值(generative weights, gene-weights for short), 我们可以学习得到认知权值(recognition weights, reco-weights); 给定认知权值, 我们可以学习得到生成权值.

结果是什么? 基于少量随机值并在两种学习阶段(phases of learning)中切换, 我们竟然可以同时学习得到上述两种权值!

在清醒阶段("wake" phase), 认知权值被用来从下到上驱动神经元, 相邻层的神经元的二进制状态则可以被用来训练生成权值;

在睡眠阶段("sleep" pahse), 从上到下的生成连接则被用来驱动网络, 从而基于生成模型(generative model)产生图像(fantasies). 相邻层的神经元状态(0/1)就可以被用来学习从下到上的认知连接(Hinto et al., 1995).

学习的规则非常简单. 清醒阶段, 生成权值gkj, 根据下式进行更新:

其中神经元k在神经元j的上层, e是学习速率, pj是神经元j被使用当前生成权值的前一层神经元的当前状态驱动时的激活概率.

睡眠阶段, 认知权值wij, 根据下式进行更新:

其中qj是神经元j被使用当前认知权值的前一层神经元的当前状态驱动时的激活概率.

[深度学习]Wake-Sleep算法,布布扣,bubuko.com

时间: 2024-10-14 01:09:30

[深度学习]Wake-Sleep算法的相关文章

深度学习 目标检测算法 SSD 论文简介

深度学习 目标检测算法 SSD 论文简介 一.论文简介: ECCV-2016 Paper:https://arxiv.org/pdf/1512.02325v5.pdf  Slides:http://www.cs.unc.edu/~wliu/papers/ssd_eccv2016_slide.pdf 二.代码训练测试: https://github.com/weiliu89/caffe/tree/ssd  一.论文算法大致流程: 1.类似"anchor"机制: 如上所示:在 featur

Python神经网络算法与深度学习视频教程人工智能算法机器学习实战视频教程

38套大数据,云计算,架构,数据分析师,Hadoop,Spark,Storm,Kafka,人工智能,机器学习,深度学习,项目实战视频教程 视频课程包含: 38套大数据和人工智能精品高级课包含:大数据,云计算,架构,数据挖掘实战,实时推荐系统实战,电视收视率项目实战,实时流统计项目实战,离线电商分析项目实战,Spark大型项目实战用户分析,智能客户系统项目实战,Linux基础,Hadoop,Spark,Storm,Docker,Mapreduce,Kafka,Flume,OpenStack,Hiv

分享《深度学习与计算机视觉算法原理框架应用》PDF《大数据架构详解从数据获取到深度学习》PDF +数据集

下载:https://pan.baidu.com/s/12-s95JrHek82tLRk3UQO_w 更多分享资料:https://www.cnblogs.com/javapythonstudy/ <深度学习与计算机视觉 算法原理.框架应用>PDF,带书签,347页.<大数据架构详解:从数据获取到深度学习>PDF,带书签,373页.配套源代码. <深度学习与计算机视觉 算法原理.框架应用>全书共13章,分为2篇,第1篇基础知识,第2篇实例精讲.用通俗易懂的文字表达公式背

分享《深度学习与计算机视觉算法原理框架应用》《大数据架构详解从数据获取到深度学习》PDF数据集

下载:https://pan.baidu.com/s/12-s95JrHek82tLRk3UQO_w 更多资料分享:http://blog.51cto.com/3215120 <深度学习与计算机视觉 算法原理.框架应用>PDF,带书签,347页.<大数据架构详解:从数据获取到深度学习>PDF,带书签,373页.配套源代码. <深度学习与计算机视觉 算法原理.框架应用>全书共13章,分为2篇,第1篇基础知识,第2篇实例精讲.用通俗易懂的文字表达公式背后的原理,实例部分提供

《深度学习与计算机视觉算法原理框架应用》PDF+《深度学习之PyTorch实战计算机视觉》PDF

下载:https://pan.baidu.com/s/12-s95JrHek82tLRk3UQO_w <深度学习与计算机视觉 算法原理.框架应用>PDF,带书签,347页.<大数据架构详解:从数据获取到深度学习>PDF,带书签,373页.配套源代码. 下载:https://pan.baidu.com/s/1P0-o29x0ZrXp8WotN7GzcA<深度学习之PyTorch实战计算机视觉> 更多分享:https://pan.baidu.com/s/1g4hv05UZ_

深度学习模型和算法细节

论文题目:Data-driven soft sensor development based on deep learning technique 摘要:利用深度学习来建立常减压装置的软测量回归模型,对以后的课题学习有用,主要本人是化工集成和数据挖掘方向的,所以这篇文章还是对我比较有吸引力的,至于文章难度如何我就不置臧否. 1---深度神经网络结构的理解 以前最普通的反向传播(back-propagation)训练的神经网络基本上都是随机生成一组初始参数然后再用梯度下降法来调正参数,从而达到一个

专家观点碰撞:深度学习能否取代其他机器学习算法

专家观点碰撞:深度学习能否取代其他机器学习算法 摘要:深度学习在最近两年非常火爆,但深度学习能否取代其他机器学习算法?纽约大学研究生Ran Bi根据Quora上的一个讨论总结了不同的观点,CSDN编辑将其翻译如下,并加上一些国内人工智能专家的观点,供大家参考. [编者按]深度学习在最近两年非常火爆,但深度学习能否取代其他机器学习算法?纽约大学研究生Ran Bi根据Quora上的一个讨论总结了不同的观点,CSDN编辑将其翻译如下,并加上一些国内人工智能专家的观点,供大家参考. 深度学习迅速地成长起

Netflix工程总监眼中的分类算法:深度学习优先级最低

Netflix工程总监眼中的分类算法:深度学习优先级最低 摘要:不同分类算法的优势是什么?Netflix公司工程总监Xavier Amatriain根据奥卡姆剃刀原理依次推荐了逻辑回归.SVM.决策树集成和深度学习,并谈了他的不同认识.他并不推荐深度学习为通用的分类技术. [编者按]针对Quora上的一个老问题:不同分类算法的优势是什么?Netflix公司工程总监Xavier Amatriain近日给出新的解答,他根据奥卡姆剃刀原理依次推荐了逻辑回归.SVM.决策树集成和深度学习,并谈了他的不同

深度学习能否取代其他机器学习算法

[编者按]深度学习在最近两年非常火爆,但深度学习能否取代其他机器学习算法?纽约大学研究生Ran Bi根据Quora上的一个讨论总结了不同的观点,CSDN编辑将其翻译如下,并加上一些国内人工智能专家的观点,供大家参考. 深度学习迅速地成长起来了,并且以其疯狂的实证结果着实令我们惊奇.Quora上有一个关于深度学习是否会让其他的机器学习算法过时的讨论.特别地,相关的算法,如反向传播.HMM会像感知机一样过时吗? 这很难回答.Google DeepMind研发工程师Jack Rae对此有一个有趣的回答

七月算法--12月机器学习在线班-第十九次课笔记-深度学习--CNN

七月算法--12月机器学习在线班-第十九次课笔记-深度学习--CNN 七月算法(julyedu.com)12月机器学习在线班学习笔记http://www.julyedu.com 1,卷积神经网络-CNN 基础知识 三个要点 1: 首先将输入数据看成三维的张量(Tensor) 2: 引入Convolution(卷积)操作,单元变成卷积核,部分连接共享权重 3:引入Pooling(采样)操作,降低输入张量的平面尺寸 ,1.1 张量(Tensor) 高,宽度,深度,eg:彩色图像:rgb,3个深度,图