数字图像处理之快速中值滤波算法

快速中值滤波算法

  中值滤波算法

      在图像处理中,在进行如边缘检测这样的进一步处理之前,通常需要首先进行一定程度的降噪。中值滤波是一种非线性数字滤波器技术,经常用于去除图像或者其它信号中的噪声。这个设计思想就是检查输入信号中的采样并判断它是否代表了信号,使用奇数个采样组成的观察窗实现这项功能。观察窗口中的数值进行排序,位于观察窗中间的中值作为输出。然后,丢弃最早的值,取得新的采样,重复上面的计算过程。中值滤波是图像处理中的一个常用步骤,它对于斑点噪声和椒盐噪声来说尤其有用。保存边缘的特性使它在不希望出现边缘模糊的场合也很有用。

      为了演示中值滤波器的工作过程,我们给下面的数组加上观察窗 3 ,重复边界的数值:

      x = [2 80 6 3]

      y[1] = Median[2 2 80] = 2
      y[2] = Median[2 80 6] = Median[2 6 80] = 6
      y[3] = Median[80 6 3] = Median[3 6 80] = 6
      y[4] = Median[6 3 3] = Median[3 3 6] = 3

      于是
      y = [2 6 6 3]

      其中 y 是 x 的中值滤波输出。

       普通中值滤波算法伪代码:

      Input: image X of size m*n, kernel radius r.

      output: image Y as X.

      for i = r to m - r do

        for j = r to n - r do

          initialize list A[]

          for a = i-r to i+r

            for b = j-r to j+r

              add X(a, b) to  A[]

            end

          end

          sort A[] then Y(i ,j) = A[A.size/2]

        end

      end

      处理前:                                                                            处理后:

                    

  但是,上述算法复杂度为O(r2).

  OpenCV实现代码:

#include "cv.h"
#include "highgui.h"
#include <iostream>

using namespace std;
using namespace cv;

int main(int argc, char* argv[])
{
        Mat src = imread("beauty.jpg");
        Mat dst;

        //参数是按顺序写的

        //高斯滤波
        //src:输入图像
        //dst:输出图像
        //Size(5,5)模板大小,为奇数
        //x方向方差
        //Y方向方差
        GaussianBlur(src,dst,Size(5,5),0,0);
        imwrite("gauss.jpg",dst);

        //中值滤波
        //src:输入图像
        //dst::输出图像
        //模板宽度,为奇数
        medianBlur(src,dst,3);
        imwrite("med.jpg",dst);

        //均值滤波
        //src:输入图像
        //dst:输出图像
        //模板大小
        //Point(-1,-1):被平滑点位置,为负值取核中心
        blur(src,dst,Size(3,3),Point(-1,-1));
        imwrite("mean.jpg",dst);

        //双边滤波
        //src:输入图像
        //dst:输入图像
        //滤波模板半径
        //颜色空间标准差
        //坐标空间标准差
        bilateralFilter(src,dst,5,10.0,2.0);//这里滤波没什么效果,不明白
        imwrite("bil.jpg",dst);

        waitKey();

        return 0;
}

  快速中值滤波算法:

     O(r)复杂度的Huang算法:<A Fast Two-Dimensional Median Filtering Algorithm>

      

    这个代码的核心在于维护一个kernel直方图,可以实现快速的读取和删除扫描区域的像素值。

int StopAmount = (2 * Radius + 1) * (2*Radius +1) * Percentile;
int Sum = 0;
for (int I = 0; I <= 255; I++)
{
    Sum += HistBlue(I);
    if (Sum >= StopAmount)      // 满足停止条件
    {
        Value = I;              // 得到中值
        break;
    }
}

   

    O(1)复杂度的CTMF算法:<Median Filter in Constant Time.pdf>

  首先,对于每一列图像,我们都为其维护一个直方图(对于8位图像,该直方图有256个元素),在整个的处理过程中,这些直方图数据都必须得到维护。每列直方图累积了2r+1个垂直方向上相邻像素的信息,初始的时候,这2r+1个像素是分别以第一行的每个像素为中心的。核的直方图通过累积2r+1个相邻的列直方图数据获取。其实,我们所做的就是将核直方图分解成他对应的列直方图的集合,在整个滤波的过程中,这些直方图数据在两个步骤内用恒定的时间保持最新。

  考虑从某个像素向右移动一个像素的情况。对于当前行,核最右侧的列直方图首先需要更新,而此时该列的列直方图中的数据还是以上一行对应位置那个像素为中心计算的。因此需要减去最上一个像素对应的直方图然后加上其下面一像素的直方图信息。这样做的效果就是将列直方图数据降低一行。这一步很明显是个0(1)操作,只有一次加法和一次减法,而于半径r无关。

第二步更新核直方图,其是2r+1个列直方图之和。这是通过减去最左侧的列直方图数据,然后再加上第一步所处理的那一列的列直方图数据获得的。这一步也是个O(1)操作,如图2所示。如前所述,加法、减法以及计算直方图的中值的耗时都是一些依赖于图像位深的计算,而于滤波半径无关。

                     

    这个算法较之前的Huang算法的差别在于,充分利用了之前的数据,这有点类似于动态规划,也是用空间换取时间的策略。

参考博客:http://www.cnblogs.com/Imageshop/archive/2013/04/26/3045672.html

时间: 2024-12-05 04:02:38

数字图像处理之快速中值滤波算法的相关文章

实时高速实现改进型中值滤波算法_爱学术_免费下载

[摘要]在图像采集和处理过程中会引入噪声,必须先对图像进行预处理.本文介绍一种快速中值滤波算法,该算法在硬件平台上实现实时处理功能.综合考虑,选择现场可编程门阵列(FPGA)作为硬件平台,采用硬件描述语言Verilog实现改进型中值滤波算法.经Modelsim仿真结果表明:基于FPGA硬件平台实现改进型中值滤波算法不仅速度快,而且实时处理效果佳,提高了图像处理的效率. [作者] 杨晶  王元庆 转载至爱学术:https://www.ixueshu.com/document/29bcda14996

关于中值滤波算法,以及C语言实现(转)

源:关于中值滤波算法,以及C语言实现 1.什么是中值滤波? 中值滤波是对一个滑动窗口内的诸像素灰度值排序,用其中值代替窗口中心象素的原来灰度值,它是一种非线性的图像平滑法,它对脉冲干扰级椒盐噪声的抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊. 中值滤波可以过滤尖峰脉冲.目的在于我们对于滤波后的数据更感兴趣.滤波后的数据保留的原图像的变化趋势,同时去除了尖峰脉冲对分析造成的影响. 以一维信号的中值滤波举例.对灰度序列80.120.90.200.100.110.70,如果按大小顺序排列,其

关于中值滤波算法,以及C语言实现

1.什么是中值滤波? 中值滤波是对一个滑动窗口内的诸像素灰度值排序,用其中值代替窗口中心象素的原来灰度值,它是一种非线性的图像平滑法,它对脉冲干扰级椒盐噪声的抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊. 中值滤波可以过滤尖峰脉冲.目的在于我们对于滤波后的数据更感兴趣.滤波后的数据保留的原图像的变化趋势,同时去除了尖峰脉冲对分析造成的影响. 以一维信号的中值滤波举例.对灰度序列80.120.90.200.100.110.70,如果按大小顺序排列,其结果为70.80.90.10O.110

Win8 Metro(C#)数字图像处理--2.51图像统计滤波算法

原文:Win8 Metro(C#)数字图像处理--2.51图像统计滤波算法 ?? [函数名称] ??图像统计滤波???WriteableBitmap?StatisticalFilter(WriteableBitmap?src,double?T) /// <summary> /// Statistical filtering process. /// </summary> /// <param name="src">The source image.&

数字图像处理------中值滤波

一 中值滤波概念 中值滤波算法以某像素的领域图像区域中的像素值的排序为基础,将像素领域内灰度的中值代替该像素的值[1]: 如:以3*3的领域为例求中值滤波中像素5的值 图1 1)int pixel[9]中存储像素1,像素2...像素9的值: 2)对数组pixel[9]进行排序操作: 3)像素5的值即为数组pixel[9]的中值pixel[4]. 中值滤波对处理椒盐噪声非常有效. 二 中值滤波代码实现 项目工程:https://github.com/ranjiewwen/Everyday_Prac

高效中值滤波(采用copyMakeBorder处理边界像素)

修改了之前滤波中的中值滤波算法,采用copyMakeBorder处理边界像素 void MedianBlur(const Mat &image_Src, Mat &image_Dst, int width_Aperture) { /////////////////////////////重新分配图像(如果需要)///////////////////////////////////////////// int width_Dst=image_Src.cols; int height_Dst=

VC++高斯滤波\中值滤波实现图像模糊处理

一.算法 高斯模糊算法 详见:高斯模糊,基本思想就是利用高斯函数,将一个坐标点的所有邻域的加权平均值设置为这些点的颜色值. 中值滤波算法就更简单了:将一个坐标点的所有邻域的平均值设置为这些点的像素值. 二.算法的代码实现 高斯函数: 使用宏定义来替换: #define PI<span style="white-space:pre"> </span>3.1415926 //高斯模糊函数 #define GAUSS_FUN(x, y) (exp(-(x*x)/(do

中值滤波的快速算法

我想学过图像处理的人没有人会不知道中值滤波的,最早的时候我是在冈萨雷斯的图像处理课本[1]中学到的,后来在看Sonka的书[2]的时候又看到了中值滤波的介绍,下面我试着结合课本所学和网上的资料自己整理一篇中值滤波的介绍. Jeremy Lin 中值滤波器是一种统计排序滤波器,由Tukey于1971年在文献[3]中提出.所谓的统计排序滤波器是一种非线性的空间滤波器,它的响应基于图像滤波器包围的图像区域中像素的排序,然后用统计排序结果决定的值代替中心像素的值.除了中值滤波器外,最大值滤波器和最小值滤

Atitit &#160;&#160;图像处理&#160;平滑&#160;也称&#160;模糊,&#160;归一化块滤波、高斯滤波、中值滤波、双边滤波)

Atitit   图像处理 平滑 也称 模糊, 归一化块滤波.高斯滤波.中值滤波.双边滤波) 是一项简单且使用频率很高的图像处理方法 用途 去噪 去雾 各种线性滤波器对图像进行平滑处理,相关OpenCV函数如下: 归一化块滤波器 (Normalized Box Filter) § 最简单的滤波器, 输出像素值是核窗口内像素值的 均值 ( 所有像素加权系数相等) § 高斯滤波器 (Gaussian Filter) § 最有用的滤波器 (尽管不是最快的). 高斯滤波是将输入数组的每一个像素点与 高斯