最长公共上升子序列 - 病毒

你有一个日志文件,里面记录着各种系统事件的详细信息。自然的,事件的时间戳按照严格递增顺序排列(不会有两个事件在完全相同的时刻发生)。

遗憾的是,你的系统被病毒感染了,日志文件中混入了病毒生成的随机伪事件(但真实事件的相对顺序保持不变)。备份的日志文件也被感染了,但由于病毒采用的随机感染方法,主日志文件和备份日志文件在感染后可能会变得不一样。

给出被感染的主日志和备份日志,求真实事件序列的最长可能长度。

Input

输入第一行为数据组数T (T<=100)。每组数据包含两行,分别描述感染后的主日志和备份日志。

每个日志文件的格式相同,均为一个整数n (1<=n<=1000)(代表感染后的事件总数)和n 个不超过100,000的正整数(表示感染后各事件的时间戳)。

注意,感染后可能会出现时间戳完全相同的事件。

Output

对于每组数据,输出真实事件序列的最长可能长度。

Sample Input

1
9 1 4 2 6 3 8 5 9 1
6 2 7 6 3 5 1

Sample Output

3

-----------------------------------------------------------我是分割线^_^--------------------------------------------------------

模板~~~日后慢慢理解........= =


#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<vector>
using namespace std;

#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define INF 0x3f3f3f3f
#define Int __int64
#define pii pair<int,int>

const int MAXN = 1111;
int num1[MAXN];
int num2[MAXN];
int dp[MAXN];

int main() {
	freopen("input.txt", "r", stdin);
	//freopen("output.txt", "w+", stdout);
	int cas;
	while (cin >> cas) {
		while (cas--) {
			memset(dp, 0, sizeof(dp));
			int n1, n2;
			cin >> n1;
			for (int i = 1; i <= n1; i++) {
				cin >> num1[i];
			}
			cin >> n2;
			for (int i = 1; i <= n2; ++i) {
				cin >> num2[i];
			}
			int Max = 0;
			for (int i = 1; i <= n1; i++) {
				Max = 0;
				for (int j = 1; j <= n2; j++) {
					if (num1[i] > num2[j] && Max < dp[j]) {
						Max = dp[j];
					}
					if (num1[i] == num2[j]) {
						dp[j] = Max + 1;
					}
				}
			}
			Max = 0;
			for (int i = 1; i <= n2; i++) {
				if (dp[i] > Max) {
					Max = dp[i];
				}
			}
			cout << Max << endl;
		}
	}
	return 0;
}
时间: 2024-10-12 19:46:55

最长公共上升子序列 - 病毒的相关文章

最长公共上升子序列(LCIS)问题的O(n^2)解法

J - 病毒 Time Limit:3000MS     Memory Limit:131072KB     64bit IO Format:%lld & %llu Submit Status Practice CSU 1120 Appoint description:  System Crawler  (2015-01-04) Description 你有一个日志文件,里面记录着各种系统事件的详细信息.自然的,事件的时间戳按照严格递增顺序排列(不会有两个事件在完全相同的时刻发生). 遗憾的是,

[codevs2185]最长公共上升子序列

试题描述 熊大妈的奶牛在小沐沐的熏陶下开始研究信息题目.小沐沐先让奶牛研究了最长上升子序列,再让他们研究了最长公共子序列,现在又让他们要研究最长公共上升子序列了.小沐沐说,对于两个串A,B,如果它们都包含一段位置不一定连续的数字,且数字是严格递增的,那么称这一段数字是两个串的公共上升子串,而所有的公共上升子串中最长的就是最长公共上升子串了.奶牛半懂不懂,小沐沐要你来告诉奶牛什么是最长公共上升子串.不过,只要告诉奶牛它的长度就可以了. 输入 第一行N,表示A,B的长度.第二行,串A.第三行,串B.

最长公共上升子序列(codevs 2185)

题目描述 Description 熊大妈的奶牛在小沐沐的熏陶下开始研究信息题目.小沐沐先让奶牛研究了最长上升子序列,再让他们研究了最长公共子序列,现在又让他们要研究最长公共上升子序列了. 小沐沐说,对于两个串A,B,如果它们都包含一段位置不一定连续的数字,且数字是严格递增的,那么称这一段数字是两个串的公共上升子串,而所有的公共上升子串中最长的就是最长公共上升子串了. 奶牛半懂不懂,小沐沐要你来告诉奶牛什么是最长公共上升子串.不过,只要告诉奶牛它的长度就可以了. 输入描述 Input Descri

POJ 2127 最长公共上升子序列

动态规划法: #include <iostream> #include <cstdio> #include <fstream> #include <algorithm> #include <cmath> #include <deque> #include <vector> #include <queue> #include <string> #include <cstring> #inc

最长公共上升子序列(LCIS)ZOJ 2432

立方算法: #include<cstdio> #include<iostream> #include<algorithm> #include<cstring> #define M 505 using namespace std; typedef long long LL; LL a[M],b[M]; int dp[M][M]; int main() { //freopen("in.txt","r",stdin); in

动态规划——最长公共上升子序列LCIS

问题 给定两个序列A和B,序列的子序列是指按照索引逐渐增加的顺序,从原序列中取出若干个数形成的一个子集,若子序列的数值大小是逐渐递增的则为上升子序列,若A和B取出的两个子序列A1和B1是相同的,则A1/B1为A和B的公共子序列.求出A和B的最长公共上升子序列. 分析     结合最长公共子序列和最长上升子序列来解决这个问题,定义状态dp[i][j]表示A串中前i个字符和B串中前j个字符且以B[j]为结尾的最长公共上升子序列的长度.则有状态转移方程:[在进行动态规划状态的设计的时候,要简单.详尽的

Codeforces 10D LCIS 求最长公共上升子序列及输出这个子序列 dp

题目链接:点击打开链接 题意: 给定n长的一个序列 再给定k长的一个序列 求LCIS并输出这个子序列 如有多解输出任意解.. = - = 敲的时候听着小曲儿pre的含义还没有想清楚,万万没想到就过了... #include<stdio.h> #include<iostream> #include<string.h> #include<set> #include<vector> #include<map> #include<mat

HDU 4512 最长公共上升子序列

各种序列复习: (1)最长上升子序列. 1.这个问题用动态规划就很好解决了,设dp[i]是以第i个数字结尾的上升子序列的最长长度.那么方程可以是dp[i]=max(dp[j]+1).(j<i).复杂度为O(n^2); 2.另外有一个该经典问题的O(nlogn)算法. 首先知道,当求dp[i]时,如果出现a[k]<a[j],而dp[k]=dp[j]时,应当优先选k吧.那么,既然每次选的都是较小,就可以把字符串按照dp[t]=k这个子序列长度分类.当同样dp[t]=k时,记录下该长度的最小的a[p

BNUOJ 4215 最长公共连续子序列

最长公共连续子序列 Time Limit: 1000ms Memory Limit: 65536KB 64-bit integer IO format: %lld      Java class name: Main 给你两个序列S1和S2,长度分别是L1,L2 (1 <= L1 , L2 <= 180). 写一个程序找出最长的连续公共子序列. 连续子序列定义为序列中连续的一个片段.例如序列"1 2 3"的子串有空串,"1","2",