Android6.0 消息机制原理研究



消息都是存放在一个消息队列中去,而消息循环线程就是围绕这个消息队列进入一个无限循环的,直到线程退出。如果队列中有消息,消息循环线程就会把它取出来,并分发给相应的Handler进行处理;如果队列中没有消息,消息循环线程就会进入空闲等待状态,等待下一个消息的到来。在编写Android应用程序时,当程序执行的任务比较繁重时,为了不阻塞UI主线程而导致ANR的发生,我们通常的做法的创建一个子线程来完成特定的任务。在创建子线程时,有两种选择,一种通过创建Thread对象来创建一个无消息循环的子线程;还有一种就是创建一个带有消息循环的子线程,而创建带有消息循环的子线程由于两种实现方法,一种是直接利用Android给我们封装好的HandlerThread类来直接生成一个带有消息循环的线程对象,另一种方法是在实现线程的run()方法内使用以下方式启动一个消息循环:

一、消息机制使用

通常消息都是有一个消息线程和一个Handler组成,下面我们看PowerManagerService中的一个消息Handler:

        mHandlerThread = new ServiceThread(TAG,
                Process.THREAD_PRIORITY_DISPLAY, false /*allowIo*/);
        mHandlerThread.start();
        mHandler = new PowerManagerHandler(mHandlerThread.getLooper());

这里的ServiceThread就是一个HandlerThread,创建Handler的时候,必须把HandlerThread的looper传进去,否则就是默认当前线程的looper。

而每个handler,大致如下:

    private final class PowerManagerHandler extends Handler {
        public PowerManagerHandler(Looper looper) {
            super(looper, null, true /*async*/);
        }

        @Override
        public void handleMessage(Message msg) {
            switch (msg.what) {
                case MSG_USER_ACTIVITY_TIMEOUT:
                    handleUserActivityTimeout();
                    break;
                case MSG_SANDMAN:
                    handleSandman();
                    break;
                case MSG_SCREEN_BRIGHTNESS_BOOST_TIMEOUT:
                    handleScreenBrightnessBoostTimeout();
                    break;
                case MSG_CHECK_WAKE_LOCK_ACQUIRE_TIMEOUT:
                    checkWakeLockAquireTooLong();
                    Message m = mHandler.obtainMessage(MSG_CHECK_WAKE_LOCK_ACQUIRE_TIMEOUT);
                    m.setAsynchronous(true);
                    mHandler.sendMessageDelayed(m, WAKE_LOCK_ACQUIRE_TOO_LONG_TIMEOUT);
                    break;
            }
        }
    }

二、消息机制原理

那我们先来看下HandlerThread的主函数run函数:

    public void run() {
        mTid = Process.myTid();
        Looper.prepare();
        synchronized (this) {
            mLooper = Looper.myLooper();//赋值后notifyall,主要是getLooper函数返回的是mLooper
            notifyAll();
        }
        Process.setThreadPriority(mPriority);
        onLooperPrepared();
        Looper.loop();
        mTid = -1;
    }

再来看看Lopper的prepare函数,最后新建了一个Looper对象,并且放在线程的局部变量中。

    public static void prepare() {
        prepare(true);
    }

    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }

Looper的构造函数中创建了MessageQueue

    private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);
        mThread = Thread.currentThread();
    }

我们再来看下MessageQueue的构造函数,其中nativeInit是一个native方法,并且把返回值保存在mPtr显然是用long型变量保存的指针

    MessageQueue(boolean quitAllowed) {
        mQuitAllowed = quitAllowed;
        mPtr = nativeInit();
    }

native函数中主要创建了NativeMessageQueue对象,并且把指针变量返回了。

static jlong android_os_MessageQueue_nativeInit(JNIEnv* env, jclass clazz) {
    NativeMessageQueue* nativeMessageQueue = new NativeMessageQueue();
    if (!nativeMessageQueue) {
        jniThrowRuntimeException(env, "Unable to allocate native queue");
        return 0;
    }

    nativeMessageQueue->incStrong(env);
    return reinterpret_cast<jlong>(nativeMessageQueue);
}

NativeMessageQueue构造函数就是获取mLooper,如果没有就是新建一个Looper

NativeMessageQueue::NativeMessageQueue() :
        mPollEnv(NULL), mPollObj(NULL), mExceptionObj(NULL) {
    mLooper = Looper::getForThread();
    if (mLooper == NULL) {
        mLooper = new Looper(false);
        Looper::setForThread(mLooper);
    }
}

然后我们再看下Looper的构造函数,显示调用了eventfd创建了一个fd,eventfd它的主要是用于进程或者线程间的通信,我们可以看下这篇博客eventfd介绍

Looper::Looper(bool allowNonCallbacks) :
        mAllowNonCallbacks(allowNonCallbacks), mSendingMessage(false),
        mPolling(false), mEpollFd(-1), mEpollRebuildRequired(false),
        mNextRequestSeq(0), mResponseIndex(0), mNextMessageUptime(LLONG_MAX) {
    mWakeEventFd = eventfd(0, EFD_NONBLOCK);
    LOG_ALWAYS_FATAL_IF(mWakeEventFd < 0, "Could not make wake event fd.  errno=%d", errno);

    AutoMutex _l(mLock);
    rebuildEpollLocked();
}

2.1 c层创建epoll

我们再来看下rebuildEpollLocked函数,创建了epoll,并且把mWakeEventFd加入epoll,而且把mRequests的fd也加入epoll

void Looper::rebuildEpollLocked() {
    // Close old epoll instance if we have one.
    if (mEpollFd >= 0) {
#if DEBUG_CALLBACKS
        ALOGD("%p ~ rebuildEpollLocked - rebuilding epoll set", this);
#endif
        close(mEpollFd);
    }

    // Allocate the new epoll instance and register the wake pipe.
    mEpollFd = epoll_create(EPOLL_SIZE_HINT);
    LOG_ALWAYS_FATAL_IF(mEpollFd < 0, "Could not create epoll instance.  errno=%d", errno);

    struct epoll_event eventItem;
    memset(& eventItem, 0, sizeof(epoll_event)); // zero out unused members of data field union
    eventItem.events = EPOLLIN;
    eventItem.data.fd = mWakeEventFd;
    int result = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, mWakeEventFd, & eventItem);
    LOG_ALWAYS_FATAL_IF(result != 0, "Could not add wake event fd to epoll instance.  errno=%d",
            errno);

    for (size_t i = 0; i < mRequests.size(); i++) {
        const Request& request = mRequests.valueAt(i);
        struct epoll_event eventItem;
        request.initEventItem(&eventItem);

        int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, request.fd, & eventItem);
        if (epollResult < 0) {
            ALOGE("Error adding epoll events for fd %d while rebuilding epoll set, errno=%d",
                    request.fd, errno);
        }
    }
}

继续回到HandlerThread的run函数,我们继续分析Looper的loop函数

    public void run() {
        mTid = Process.myTid();
        Looper.prepare();
        synchronized (this) {
            mLooper = Looper.myLooper();
            notifyAll();
        }
        Process.setThreadPriority(mPriority);
        onLooperPrepared();
        Looper.loop();
        mTid = -1;
    }

我们看看Looper的loop函数:

    public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;//得到Looper的mQueue

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        for (;;) {
            Message msg = queue.next(); // might block这个函数会阻塞,阻塞主要是epoll_wait
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            Printer logging = me.mLogging;//自己打的打印
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            msg.target.dispatchMessage(msg);

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }

MessageQueue类的next函数主要是调用了nativePollOnce函数,后面就是从消息队列中取出一个Message

    Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;//之前保留的指针
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

下面我们主要看下nativePollOnce这个native函数,把之前的指针强制转换成NativeMessageQueue,然后调用其pollOnce函数

static void android_os_MessageQueue_nativePollOnce(JNIEnv* env, jobject obj,
        jlong ptr, jint timeoutMillis) {
    NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
    nativeMessageQueue->pollOnce(env, obj, timeoutMillis);
}

2.2 c层epoll_wait阻塞

pollOnce函数,这个函数前面的while一般都没有只是处理了indent大于0的情况,这种情况一般没有,所以我们可以直接看pollInner函数

int Looper::pollOnce(int timeoutMillis, int* outFd, int* outEvents, void** outData) {
    int result = 0;
    for (;;) {
        while (mResponseIndex < mResponses.size()) {
            const Response& response = mResponses.itemAt(mResponseIndex++);
            int ident = response.request.ident;
            if (ident >= 0) {
                int fd = response.request.fd;
                int events = response.events;
                void* data = response.request.data;
#if DEBUG_POLL_AND_WAKE
                ALOGD("%p ~ pollOnce - returning signalled identifier %d: "
                        "fd=%d, events=0x%x, data=%p",
                        this, ident, fd, events, data);
#endif
                if (outFd != NULL) *outFd = fd;
                if (outEvents != NULL) *outEvents = events;
                if (outData != NULL) *outData = data;
                return ident;
            }
        }

        if (result != 0) {
#if DEBUG_POLL_AND_WAKE
            ALOGD("%p ~ pollOnce - returning result %d", this, result);
#endif
            if (outFd != NULL) *outFd = 0;
            if (outEvents != NULL) *outEvents = 0;
            if (outData != NULL) *outData = NULL;
            return result;
        }

        result = pollInner(timeoutMillis);
    }
}

pollInner函数主要就是调用epoll_wait阻塞,并且java层会计算每次阻塞的时间传到c层,等待有mWakeEventFd或者之前addFd的fd有事件过来,才会epoll_wait返回。

int Looper::pollInner(int timeoutMillis) {
#if DEBUG_POLL_AND_WAKE
    ALOGD("%p ~ pollOnce - waiting: timeoutMillis=%d", this, timeoutMillis);
#endif

    // Adjust the timeout based on when the next message is due.
    if (timeoutMillis != 0 && mNextMessageUptime != LLONG_MAX) {
        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
        int messageTimeoutMillis = toMillisecondTimeoutDelay(now, mNextMessageUptime);
        if (messageTimeoutMillis >= 0
                && (timeoutMillis < 0 || messageTimeoutMillis < timeoutMillis)) {
            timeoutMillis = messageTimeoutMillis;
        }
#if DEBUG_POLL_AND_WAKE
        ALOGD("%p ~ pollOnce - next message in %" PRId64 "ns, adjusted timeout: timeoutMillis=%d",
                this, mNextMessageUptime - now, timeoutMillis);
#endif
    }

    // Poll.
    int result = POLL_WAKE;
    mResponses.clear();//清空mResponses
    mResponseIndex = 0;

    // We are about to idle.
    mPolling = true;

    struct epoll_event eventItems[EPOLL_MAX_EVENTS];
    int eventCount = epoll_wait(mEpollFd, eventItems, EPOLL_MAX_EVENTS, timeoutMillis);//epoll_wait主要线程阻塞在这,这个阻塞的时间也是有java层传过来的

    // No longer idling.
    mPolling = false;

    // Acquire lock.
    mLock.lock();

    // Rebuild epoll set if needed.
    if (mEpollRebuildRequired) {
        mEpollRebuildRequired = false;
        rebuildEpollLocked();
        goto Done;
    }

    // Check for poll error.
    if (eventCount < 0) {
        if (errno == EINTR) {
            goto Done;
        }
        ALOGW("Poll failed with an unexpected error, errno=%d", errno);
        result = POLL_ERROR;
        goto Done;
    }

    // Check for poll timeout.
    if (eventCount == 0) {
#if DEBUG_POLL_AND_WAKE
        ALOGD("%p ~ pollOnce - timeout", this);
#endif
        result = POLL_TIMEOUT;
        goto Done;
    }

    // Handle all events.
#if DEBUG_POLL_AND_WAKE
    ALOGD("%p ~ pollOnce - handling events from %d fds", this, eventCount);
#endif

    for (int i = 0; i < eventCount; i++) {
        int fd = eventItems[i].data.fd;
        uint32_t epollEvents = eventItems[i].events;
        if (fd == mWakeEventFd) {//通知唤醒线程的事件
            if (epollEvents & EPOLLIN) {
                awoken();
            } else {
                ALOGW("Ignoring unexpected epoll events 0x%x on wake event fd.", epollEvents);
            }
        } else {
            ssize_t requestIndex = mRequests.indexOfKey(fd);//之前addFd的事件
            if (requestIndex >= 0) {
                int events = 0;
                if (epollEvents & EPOLLIN) events |= EVENT_INPUT;
                if (epollEvents & EPOLLOUT) events |= EVENT_OUTPUT;
                if (epollEvents & EPOLLERR) events |= EVENT_ERROR;
                if (epollEvents & EPOLLHUP) events |= EVENT_HANGUP;
                pushResponse(events, mRequests.valueAt(requestIndex));//放在mResponses中
            } else {
                ALOGW("Ignoring unexpected epoll events 0x%x on fd %d that is "
                        "no longer registered.", epollEvents, fd);
            }
        }
    }
Done: ;

    // Invoke pending message callbacks.
    mNextMessageUptime = LLONG_MAX;
    while (mMessageEnvelopes.size() != 0) {// 这块主要是c层的消息,java层的消息是自己管理的
        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
        const MessageEnvelope& messageEnvelope = mMessageEnvelopes.itemAt(0);
        if (messageEnvelope.uptime <= now) {
            // Remove the envelope from the list.
            // We keep a strong reference to the handler until the call to handleMessage
            // finishes.  Then we drop it so that the handler can be deleted *before*
            // we reacquire our lock.
            { // obtain handler
                sp<MessageHandler> handler = messageEnvelope.handler;
                Message message = messageEnvelope.message;
                mMessageEnvelopes.removeAt(0);
                mSendingMessage = true;
                mLock.unlock();

#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS
                ALOGD("%p ~ pollOnce - sending message: handler=%p, what=%d",
                        this, handler.get(), message.what);
#endif
                handler->handleMessage(message);
            } // release handler

            mLock.lock();
            mSendingMessage = false;
            result = POLL_CALLBACK;
        } else {
            // The last message left at the head of the queue determines the next wakeup time.
            mNextMessageUptime = messageEnvelope.uptime;
            break;
        }
    }

    // Release lock.
    mLock.unlock();

    // Invoke all response callbacks.
    for (size_t i = 0; i < mResponses.size(); i++) {//这是之前addFd的事件的处理,主要是遍历mResponses,然后调用其回调
        Response& response = mResponses.editItemAt(i);
        if (response.request.ident == POLL_CALLBACK) {
            int fd = response.request.fd;
            int events = response.events;
            void* data = response.request.data;
#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS
            ALOGD("%p ~ pollOnce - invoking fd event callback %p: fd=%d, events=0x%x, data=%p",
                    this, response.request.callback.get(), fd, events, data);
#endif
            // Invoke the callback.  Note that the file descriptor may be closed by
            // the callback (and potentially even reused) before the function returns so
            // we need to be a little careful when removing the file descriptor afterwards.
            int callbackResult = response.request.callback->handleEvent(fd, events, data);
            if (callbackResult == 0) {
                removeFd(fd, response.request.seq);
            }

            // Clear the callback reference in the response structure promptly because we
            // will not clear the response vector itself until the next poll.
            response.request.callback.clear();
            result = POLL_CALLBACK;
        }
    }
    return result;
}

继续分析Looper的loop函数,可以增加自己的打印来调试代码,之前调用Message的target的dispatchMessage来分配消息

        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            Printer logging = me.mLogging;//自己的打印
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            msg.target.dispatchMessage(msg);

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }

2.3 增加调试打印

我们先来看自己添加打印,可以通过Lopper的setMessageLogging函数来打印

    public void setMessageLogging(@Nullable Printer printer) {
        mLogging = printer;
    }

Printer就是一个interface

public interface Printer {
    /**
     * Write a line of text to the output.  There is no need to terminate
     * the given string with a newline.
     */
    void println(String x);
}

2.4 java层消息分发处理

再来看消息的分发,先是调用Handler的obtainMessage函数

                Message msg = mHandler.obtainMessage(MSG_CHECK_WAKE_LOCK_ACQUIRE_TIMEOUT);
                msg.setAsynchronous(true);
                mHandler.sendMessageDelayed(msg, WAKE_LOCK_ACQUIRE_TOO_LONG_TIMEOUT);

先看obtainMessage调用了Message的obtain函数

    public final Message obtainMessage(int what)
    {
        return Message.obtain(this, what);
    }

Message的obtain函数就是新建一个Message,然后其target就是设置成其Handler

    public static Message obtain(Handler h, int what) {
        Message m = obtain();//就是新建一个Message
        m.target = h;
        m.what = what;

        return m;
    }

我们再联系之前分发消息

msg.target.dispatchMessage(msg);

最后就是调用Handler的dispatchMessage函数,最后在Handler中,最后会根据不同的情况对消息进行处理。

    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);//这种就是用post形式发送,带Runnable的
        } else {
            if (mCallback != null) {//这种是handler传参的时候就是传入了mCallback回调了
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);//最后就是在自己实现的handleMessage处理
        }
    }

2.3 java层 消息发送

我们再看下java层的消息发送,主要也是调用Handler的sendMessage post之类函数,最终都会调用下面这个函数

    public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
        MessageQueue queue = mQueue;
        if (queue == null) {
            RuntimeException e = new RuntimeException(
                    this + " sendMessageAtTime() called with no mQueue");
            Log.w("Looper", e.getMessage(), e);
            return false;
        }
        return enqueueMessage(queue, msg, uptimeMillis);
    }

我们再来看java层发送消息最终都会调用enqueueMessage函数

    private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
        msg.target = this;
        if (mAsynchronous) {
            msg.setAsynchronous(true);
        }
        return queue.enqueueMessage(msg, uptimeMillis);
    }

最终在enqueueMessage中,把消息加入消息队列,然后需要的话就调用c层的nativeWake函数

    boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }

我们看下这个native方法,最后也是调用了Looper的wake函数

static void android_os_MessageQueue_nativeWake(JNIEnv* env, jclass clazz, jlong ptr) {
    NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
    nativeMessageQueue->wake();
}
void NativeMessageQueue::wake() {
    mLooper->wake();
}

Looper类的wake,函数只是往mWakeEventfd中写了一些内容,这个fd只是通知而已,类似pipe,最后会把epoll_wait唤醒,线程就不阻塞了继续先发送c层消息,然后处理之前addFd的事件,然后处理java层的消息。

void Looper::wake() {
#if DEBUG_POLL_AND_WAKE
    ALOGD("%p ~ wake", this);
#endif

    uint64_t inc = 1;
    ssize_t nWrite = TEMP_FAILURE_RETRY(write(mWakeEventFd, &inc, sizeof(uint64_t)));
    if (nWrite != sizeof(uint64_t)) {
        if (errno != EAGAIN) {
            ALOGW("Could not write wake signal, errno=%d", errno);
        }
    }
}

2.4 c层发送消息

在c层也是可以发送消息的,主要是调用Looper的sendMessageAtTime函数,参数有有一个handler是一个回调,我们把消息放在mMessageEnvelopes中。

void Looper::sendMessageAtTime(nsecs_t uptime, const sp<MessageHandler>& handler,
        const Message& message) {
#if DEBUG_CALLBACKS
    ALOGD("%p ~ sendMessageAtTime - uptime=%" PRId64 ", handler=%p, what=%d",
            this, uptime, handler.get(), message.what);
#endif

    size_t i = 0;
    { // acquire lock
        AutoMutex _l(mLock);

        size_t messageCount = mMessageEnvelopes.size();
        while (i < messageCount && uptime >= mMessageEnvelopes.itemAt(i).uptime) {
            i += 1;
        }

        MessageEnvelope messageEnvelope(uptime, handler, message);
        mMessageEnvelopes.insertAt(messageEnvelope, i, 1);

        // Optimization: If the Looper is currently sending a message, then we can skip
        // the call to wake() because the next thing the Looper will do after processing
        // messages is to decide when the next wakeup time should be.  In fact, it does
        // not even matter whether this code is running on the Looper thread.
        if (mSendingMessage) {
            return;
        }
    } // release lock

    // Wake the poll loop only when we enqueue a new message at the head.
    if (i == 0) {
        wake();
    }
}

当在pollOnce中,在epoll_wait之后,会遍历mMessageEnvelopes中的消息,然后调用其handler的handleMessage函数

    while (mMessageEnvelopes.size() != 0) {
        nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
        const MessageEnvelope& messageEnvelope = mMessageEnvelopes.itemAt(0);
        if (messageEnvelope.uptime <= now) {
            // Remove the envelope from the list.
            // We keep a strong reference to the handler until the call to handleMessage
            // finishes.  Then we drop it so that the handler can be deleted *before*
            // we reacquire our lock.
            { // obtain handler
                sp<MessageHandler> handler = messageEnvelope.handler;
                Message message = messageEnvelope.message;
                mMessageEnvelopes.removeAt(0);
                mSendingMessage = true;
                mLock.unlock();

#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS
                ALOGD("%p ~ pollOnce - sending message: handler=%p, what=%d",
                        this, handler.get(), message.what);
#endif
                handler->handleMessage(message);
            } // release handler

            mLock.lock();
            mSendingMessage = false;
            result = POLL_CALLBACK;
        } else {
            // The last message left at the head of the queue determines the next wakeup time.
            mNextMessageUptime = messageEnvelope.uptime;
            break;
        }
    }

有一个Looper_test.cpp文件,里面介绍了很多Looper的使用方法,我们来看下

    sp<StubMessageHandler> handler = new StubMessageHandler();
    mLooper->sendMessageAtTime(now + ms2ns(100), handler, Message(MSG_TEST1));

StubMessageHandler继承MessageHandler就必须实现handleMessage方法

class StubMessageHandler : public MessageHandler {
public:
    Vector<Message> messages;

    virtual void handleMessage(const Message& message) {
        messages.push(message);
    }
};

我们再顺便看下Message和MessageHandler类

struct Message {
    Message() : what(0) { }
    Message(int what) : what(what) { }

    /* The message type. (interpretation is left up to the handler) */
    int what;
};

/**
 * Interface for a Looper message handler.
 *
 * The Looper holds a strong reference to the message handler whenever it has
 * a message to deliver to it.  Make sure to call Looper::removeMessages
 * to remove any pending messages destined for the handler so that the handler
 * can be destroyed.
 */
class MessageHandler : public virtual RefBase {
protected:
    virtual ~MessageHandler() { }

public:
    /**
     * Handles a message.
     */
    virtual void handleMessage(const Message& message) = 0;
};

2.5 c层addFd

我们也可以在Looper.cpp的addFd中增加fd放入线程epoll中,当fd有数据来我们也可以处理相应的数据,下面我们先来看下addFd函数,我们注意其中有一个callBack回调

int Looper::addFd(int fd, int ident, int events, Looper_callbackFunc callback, void* data) {
    return addFd(fd, ident, events, callback ? new SimpleLooperCallback(callback) : NULL, data);
}

int Looper::addFd(int fd, int ident, int events, const sp<LooperCallback>& callback, void* data) {
#if DEBUG_CALLBACKS
    ALOGD("%p ~ addFd - fd=%d, ident=%d, events=0x%x, callback=%p, data=%p", this, fd, ident,
            events, callback.get(), data);
#endif

    if (!callback.get()) {
        if (! mAllowNonCallbacks) {
            ALOGE("Invalid attempt to set NULL callback but not allowed for this looper.");
            return -1;
        }

        if (ident < 0) {
            ALOGE("Invalid attempt to set NULL callback with ident < 0.");
            return -1;
        }
    } else {
        ident = POLL_CALLBACK;
    }

    { // acquire lock
        AutoMutex _l(mLock);

        Request request;
        request.fd = fd;
        request.ident = ident;
        request.events = events;
        request.seq = mNextRequestSeq++;
        request.callback = callback;
        request.data = data;
        if (mNextRequestSeq == -1) mNextRequestSeq = 0; // reserve sequence number -1

        struct epoll_event eventItem;
        request.initEventItem(&eventItem);

        ssize_t requestIndex = mRequests.indexOfKey(fd);
        if (requestIndex < 0) {
            int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, & eventItem);//加入epoll
            if (epollResult < 0) {
                ALOGE("Error adding epoll events for fd %d, errno=%d", fd, errno);
                return -1;
            }
            mRequests.add(fd, request);//放入mRequests中
        } else {
            int epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_MOD, fd, & eventItem);//更新
            if (epollResult < 0) {
                if (errno == ENOENT) {
                    // Tolerate ENOENT because it means that an older file descriptor was
                    // closed before its callback was unregistered and meanwhile a new
                    // file descriptor with the same number has been created and is now
                    // being registered for the first time.  This error may occur naturally
                    // when a callback has the side-effect of closing the file descriptor
                    // before returning and unregistering itself.  Callback sequence number
                    // checks further ensure that the race is benign.
                    //
                    // Unfortunately due to kernel limitations we need to rebuild the epoll
                    // set from scratch because it may contain an old file handle that we are
                    // now unable to remove since its file descriptor is no longer valid.
                    // No such problem would have occurred if we were using the poll system
                    // call instead, but that approach carries others disadvantages.
#if DEBUG_CALLBACKS
                    ALOGD("%p ~ addFd - EPOLL_CTL_MOD failed due to file descriptor "
                            "being recycled, falling back on EPOLL_CTL_ADD, errno=%d",
                            this, errno);
#endif
                    epollResult = epoll_ctl(mEpollFd, EPOLL_CTL_ADD, fd, & eventItem);
                    if (epollResult < 0) {
                        ALOGE("Error modifying or adding epoll events for fd %d, errno=%d",
                                fd, errno);
                        return -1;
                    }
                    scheduleEpollRebuildLocked();
                } else {
                    ALOGE("Error modifying epoll events for fd %d, errno=%d", fd, errno);
                    return -1;
                }
            }
            mRequests.replaceValueAt(requestIndex, request);
        }
    } // release lock
    return 1;
}

在pollOnce函数中,我们先寻找mRequests中匹配的fd,然后在pushResponse中新建一个Response,然后把Response和Request匹配起来。

        } else {
            ssize_t requestIndex = mRequests.indexOfKey(fd);
            if (requestIndex >= 0) {
                int events = 0;
                if (epollEvents & EPOLLIN) events |= EVENT_INPUT;
                if (epollEvents & EPOLLOUT) events |= EVENT_OUTPUT;
                if (epollEvents & EPOLLERR) events |= EVENT_ERROR;
                if (epollEvents & EPOLLHUP) events |= EVENT_HANGUP;
                pushResponse(events, mRequests.valueAt(requestIndex));
            } else {
                ALOGW("Ignoring unexpected epoll events 0x%x on fd %d that is "
                        "no longer registered.", epollEvents, fd);
            }
        }

下面我们就会遍历mResponses中的Response,然后调用其request中的回调

    for (size_t i = 0; i < mResponses.size(); i++) {
        Response& response = mResponses.editItemAt(i);
        if (response.request.ident == POLL_CALLBACK) {
            int fd = response.request.fd;
            int events = response.events;
            void* data = response.request.data;
#if DEBUG_POLL_AND_WAKE || DEBUG_CALLBACKS
            ALOGD("%p ~ pollOnce - invoking fd event callback %p: fd=%d, events=0x%x, data=%p",
                    this, response.request.callback.get(), fd, events, data);
#endif
            // Invoke the callback.  Note that the file descriptor may be closed by
            // the callback (and potentially even reused) before the function returns so
            // we need to be a little careful when removing the file descriptor afterwards.
            int callbackResult = response.request.callback->handleEvent(fd, events, data);
            if (callbackResult == 0) {
                removeFd(fd, response.request.seq);
            }

            // Clear the callback reference in the response structure promptly because we
            // will not clear the response vector itself until the next poll.
            response.request.callback.clear();
            result = POLL_CALLBACK;
        }
    }

同样我们再来看看Looper_test.cpp是如何使用的?

    Pipe pipe;
    StubCallbackHandler handler(true);

    handler.setCallback(mLooper, pipe.receiveFd, Looper::EVENT_INPUT);

我们看下handler的setCallback函数

class CallbackHandler {
public:
    void setCallback(const sp<Looper>& looper, int fd, int events) {
        looper->addFd(fd, 0, events, staticHandler, this);//就是调用了looper的addFd函数,并且回调
    }

protected:
    virtual ~CallbackHandler() { }

    virtual int handler(int fd, int events) = 0;

private:
    static int staticHandler(int fd, int events, void* data) {//这个就是回调函数
        return static_cast<CallbackHandler*>(data)->handler(fd, events);
    }
};

class StubCallbackHandler : public CallbackHandler {
public:
    int nextResult;
    int callbackCount;

    int fd;
    int events;

    StubCallbackHandler(int nextResult) : nextResult(nextResult),
            callbackCount(0), fd(-1), events(-1) {
    }

protected:
    virtual int handler(int fd, int events) {//这个是通过回调函数再调到这里的
        callbackCount += 1;
        this->fd = fd;
        this->events = events;
        return nextResult;
    }
};

我们结合Looper的addFd一起来看,当callback是有的,我们新建一个SimpleLooperCallback

int Looper::addFd(int fd, int ident, int events, Looper_callbackFunc callback, void* data) {
    return addFd(fd, ident, events, callback ? new SimpleLooperCallback(callback) : NULL, data);
}

这里的Looper_callbackFunc是一个typedef

typedef int (*Looper_callbackFunc)(int fd, int events, void* data);

我们再来看SimpleLooperCallback

class SimpleLooperCallback : public LooperCallback {
protected:
    virtual ~SimpleLooperCallback();

public:
    SimpleLooperCallback(Looper_callbackFunc callback);
    virtual int handleEvent(int fd, int events, void* data);

private:
    Looper_callbackFunc mCallback;
};
SimpleLooperCallback::SimpleLooperCallback(Looper_callbackFunc callback) :
        mCallback(callback) {
}

SimpleLooperCallback::~SimpleLooperCallback() {
}

int SimpleLooperCallback::handleEvent(int fd, int events, void* data) {
    return mCallback(fd, events, data);
}

最后我们是调用callback->handleEvent(fd, events, data),而callback就是SimpleLooperCallback,这里的data,之前传进来的就是CallbackHandler 的this指针

因此最后就是调用了staticHandler,而data->handler,就是this->handler,最后是虚函数就调用到了StubCallbackHandler 的handler函数中了。

当然我们也可以不用这么复杂,直接使用第二个addFd函数,当然callBack我们需要自己定义一个类来实现LooperCallBack类就行了,这样就简单多了。

int addFd(int fd, int ident, int events, const sp<LooperCallback>& callback, void* data);

2.6 java层addFd

一直以为只能在c层的Looper中才能addFd,原来在java层也通过jni做了这个功能。

我们可以在MessageQueue中的addOnFileDescriptorEventListener来实现这个功能

    public void addOnFileDescriptorEventListener(@NonNull FileDescriptor fd,
            @OnFileDescriptorEventListener.Events int events,
            @NonNull OnFileDescriptorEventListener listener) {
        if (fd == null) {
            throw new IllegalArgumentException("fd must not be null");
        }
        if (listener == null) {
            throw new IllegalArgumentException("listener must not be null");
        }

        synchronized (this) {
            updateOnFileDescriptorEventListenerLocked(fd, events, listener);
        }
    }

我们再来看看OnFileDescriptorEventListener 这个回调

    public interface OnFileDescriptorEventListener {
        public static final int EVENT_INPUT = 1 << 0;
        public static final int EVENT_OUTPUT = 1 << 1;
        public static final int EVENT_ERROR = 1 << 2;

        /** @hide */
        @Retention(RetentionPolicy.SOURCE)
        @IntDef(flag=true, value={EVENT_INPUT, EVENT_OUTPUT, EVENT_ERROR})
        public @interface Events {}

        @Events int onFileDescriptorEvents(@NonNull FileDescriptor fd, @Events int events);
    }

接着调用了updateOnFileDescriptorEventListenerLocked函数

    private void updateOnFileDescriptorEventListenerLocked(FileDescriptor fd, int events,
            OnFileDescriptorEventListener listener) {
        final int fdNum = fd.getInt$();

        int index = -1;
        FileDescriptorRecord record = null;
        if (mFileDescriptorRecords != null) {
            index = mFileDescriptorRecords.indexOfKey(fdNum);
            if (index >= 0) {
                record = mFileDescriptorRecords.valueAt(index);
                if (record != null && record.mEvents == events) {
                    return;
                }
            }
        }

        if (events != 0) {
            events |= OnFileDescriptorEventListener.EVENT_ERROR;
            if (record == null) {
                if (mFileDescriptorRecords == null) {
                    mFileDescriptorRecords = new SparseArray<FileDescriptorRecord>();
                }
                record = new FileDescriptorRecord(fd, events, listener);//fd保存在FileDescriptorRecord对象
                mFileDescriptorRecords.put(fdNum, record);//mFileDescriptorRecords然后保存在
            } else {
                record.mListener = listener;
                record.mEvents = events;
                record.mSeq += 1;
            }
            nativeSetFileDescriptorEvents(mPtr, fdNum, events);//调用native函数
        } else if (record != null) {
            record.mEvents = 0;
            mFileDescriptorRecords.removeAt(index);
        }
    }

native最后调用了NativeMessageQueue的setFileDescriptorEvents函数

static void android_os_MessageQueue_nativeSetFileDescriptorEvents(JNIEnv* env, jclass clazz,
        jlong ptr, jint fd, jint events) {
    NativeMessageQueue* nativeMessageQueue = reinterpret_cast<NativeMessageQueue*>(ptr);
    nativeMessageQueue->setFileDescriptorEvents(fd, events);
}

setFileDescriptorEvents函数,这个addFd就是调用的第二个addFd,因此我们可以肯定NativeMessageQueue继承了LooperCallback

void NativeMessageQueue::setFileDescriptorEvents(int fd, int events) {
    if (events) {
        int looperEvents = 0;
        if (events & CALLBACK_EVENT_INPUT) {
            looperEvents |= Looper::EVENT_INPUT;
        }
        if (events & CALLBACK_EVENT_OUTPUT) {
            looperEvents |= Looper::EVENT_OUTPUT;
        }
        mLooper->addFd(fd, Looper::POLL_CALLBACK, looperEvents, this,
                reinterpret_cast<void*>(events));
    } else {
        mLooper->removeFd(fd);
    }
}

果然是,需要实现handleEvent函数

class NativeMessageQueue : public MessageQueue, public LooperCallback {
public:
    NativeMessageQueue();
    virtual ~NativeMessageQueue();

    virtual void raiseException(JNIEnv* env, const char* msg, jthrowable exceptionObj);

    void pollOnce(JNIEnv* env, jobject obj, int timeoutMillis);
    void wake();
    void setFileDescriptorEvents(int fd, int events);

    virtual int handleEvent(int fd, int events, void* data);

handleEvent就是在looper中epoll_wait之后,当我们增加的fd有数据就会调用这个函数

int NativeMessageQueue::handleEvent(int fd, int looperEvents, void* data) {
    int events = 0;
    if (looperEvents & Looper::EVENT_INPUT) {
        events |= CALLBACK_EVENT_INPUT;
    }
    if (looperEvents & Looper::EVENT_OUTPUT) {
        events |= CALLBACK_EVENT_OUTPUT;
    }
    if (looperEvents & (Looper::EVENT_ERROR | Looper::EVENT_HANGUP | Looper::EVENT_INVALID)) {
        events |= CALLBACK_EVENT_ERROR;
    }
    int oldWatchedEvents = reinterpret_cast<intptr_t>(data);
    int newWatchedEvents = mPollEnv->CallIntMethod(mPollObj,
            gMessageQueueClassInfo.dispatchEvents, fd, events); //调用回调
    if (!newWatchedEvents) {
        return 0; // unregister the fd
    }
    if (newWatchedEvents != oldWatchedEvents) {
        setFileDescriptorEvents(fd, newWatchedEvents);
    }
    return 1;
}

最后在java的MessageQueue中的dispatchEvents就是在jni层反调过来的,然后调用之前注册的回调函数

    // Called from native code.
    private int dispatchEvents(int fd, int events) {
        // Get the file descriptor record and any state that might change.
        final FileDescriptorRecord record;
        final int oldWatchedEvents;
        final OnFileDescriptorEventListener listener;
        final int seq;
        synchronized (this) {
            record = mFileDescriptorRecords.get(fd);//通过fd得到FileDescriptorRecord
            if (record == null) {
                return 0; // spurious, no listener registered
            }

            oldWatchedEvents = record.mEvents;
            events &= oldWatchedEvents; // filter events based on current watched set
            if (events == 0) {
                return oldWatchedEvents; // spurious, watched events changed
            }

            listener = record.mListener;
            seq = record.mSeq;
        }

        // Invoke the listener outside of the lock.
        int newWatchedEvents = listener.onFileDescriptorEvents(//listener回调
                record.mDescriptor, events);
        if (newWatchedEvents != 0) {
            newWatchedEvents |= OnFileDescriptorEventListener.EVENT_ERROR;
        }

        // Update the file descriptor record if the listener changed the set of
        // events to watch and the listener itself hasn't been updated since.
        if (newWatchedEvents != oldWatchedEvents) {
            synchronized (this) {
                int index = mFileDescriptorRecords.indexOfKey(fd);
                if (index >= 0 && mFileDescriptorRecords.valueAt(index) == record
                        && record.mSeq == seq) {
                    record.mEvents = newWatchedEvents;
                    if (newWatchedEvents == 0) {
                        mFileDescriptorRecords.removeAt(index);
                    }
                }
            }
        }

        // Return the new set of events to watch for native code to take care of.
        return newWatchedEvents;
    }
时间: 2024-08-29 11:39:35

Android6.0 消息机制原理研究的相关文章

android消息机制原理详解

android消息机制原理详解 因为之前使用的是CSDN默认的文本编辑器,而且也因为懒得学用MarkDown来写博客,所以排版上有一些问题.就上一篇写的设计模式之抽象工厂模式提出了这个问题(一个android群的群友提出来的,没有在评论里评论),所以以后的文章都用MarkDown来写了. 好了,言归正传,这篇文章我来介绍一下android消息机制的原理 Android消息机制概述 说到Android的消息机制,Android初级工程师(不包括那些初学者)肯定会想到Handler.是的,Andro

【Android】消息机制原理

Android 消息机制涉及到的类主要有 Looper Handler Message.MessageQueue HandlerThread 下面结合 Android API 22 的源码分析上面几个类的内部实现细节,以窥探其中的原理一二. Looper 消息循环 Looper 是一个循环处理消息的类,Looper内部维护一个消息队列,循环的从消息队列中取出消息并处理,如果队列为空则等待新消息.Looper 必须关联到某个线程中,这样其才能获得操作系统的调度而执行消息循环处理,默认情况下,通过

Handler 、 Looper 、Message异步消息处理线程机制( hander消息机制原理)

Handler . Looper .Message 这三者都与Android异步消息处理线程相关的概念. 那么什么叫异步消息处理线程呢? 异步消息处理线程启动后会进入一个无限的循环体之中,每循环一次,从其内部的消息队列中取出一个消息,然后回调相应的消息处理函数,执行完成一个消息后则继续循环.若消息队列为空,线程则会阻塞等待. 详细总结::: 前提,主线程ui,只能刷新页面和处理事件:耗时的数据处理都在子线程中... 那么子线程的数据如何同步到主线程? 那就需要异步消息处理机制Handler .

hander消息机制原理

基本原理 线程中调用Handler.sendMsg()方法(参数是Message对象),将需要Main线程处理的事件 添加到Main线程的MessageQueue中,Main线程通过MainLooper从消息队列中取出Handler发过来的这个消息时,会回调 Handler的handlerMessage()方法. 注意:(UI主要线程中才有Looper)创建一个Handler时一定要关联一个Looper实例,默认构造方法Handler(),它是关联当前Thread的Looper在创建一个Hand

深入Windows内核——C++中的消息机制

<编程思想之消息机制>一文中我们讲了消息的相关概念和消息机制的模拟,本文将进一步聊聊C++中的消息机制. 从简单例子探析核心原理 在讲之前,我们先看一个简单例子:创建一个窗口和两个按钮,用来控制窗口的背景颜色.其效果如下: 图 2 :效果图 Win32Test.h #pragma once #include <windows.h> #include <atltypes.h> #include <tchar.h> //资源ID #define ID_BUTTO

编程思想之消息机制

编程思想之消息机制 消息机制 从一个剧情开始 路遥的<平凡的世界>因为翻拍成电视剧,又再次火起来了!我们就从这里开始吧,其小说是以这样一个场景开头的: 在一个半山腰县立高中的大院坝里,在一个校园内的南墙根下,按班级排起了十几个纵队的年轻男女,各班的值日生正忙碌地给众人分发饭菜-- 菜分为甲.乙.丙三等,甲菜以土豆.白菜.粉条为主,还有可人大肉片,乙菜没有肉,丙菜只有清水煮白萝卜.主食也分为三等:白面馍,玉米面馍,高粱面馍,白.黄.黑分别代表了三种差别,学生们戏称欧洲.亚洲.非洲.每个人的饭菜都

【转】深入Windows内核——C++中的消息机制

上节讲了消息的相关概念,本文将进一步聊聊C++中的消息机制. 从简单例子探析核心原理 在讲之前,我们先看一个简单例子:创建一个窗口和两个按钮,用来控制窗口的背景颜色.其效果 图1.效果图  Win32Test.h 1 #pragma once 2 3 #include <windows.h> 4 #include <atltypes.h> 5 #include <tchar.h> 6 7 //资源ID 8 #define ID_BUTTON_DRAW 1000 9 #d

OAuth的机制原理讲解及开发流程 (转)

本想前段时间就把自己通过QQ OAuth1.0.OAuth2.0协议进行验证而实现QQ登录的心得及Demo实例分享给大家,可一直很忙,今天抽点时间说下OAuth1.0协议原理,及讲解下QQ对于Oauth1.0的认证开发.闲话多说了点,下面直接进入主题. 1.OAuth的简述 OAuth(Open Authorization,开放授权)是为用户资源的授权定义了一个安全.开放及简单的标准,第三方无需知道用户的账号及密码,就可获取到用户的授权信息,并且这是安全的.(我喜欢简单明了,这里没看懂,没关系,

OAuth的机制原理讲解及开发流程

原文地址:http://kb.cnblogs.com/page/189153/ 本想前段时间就把自己通过QQ OAuth1.0.OAuth2.0协议进行验证而实现QQ登录的心得及Demo实例分享给大家,可一直很忙,今天抽点时间说下OAuth1.0协议原理,及讲解下QQ对于Oauth1.0的认证开发.闲话多说了点,下面直接进入主题. 1.OAuth的简述 OAuth(Open Authorization,开放授权)是为用户资源的授权定义了一个安全.开放及简单的标准,第三方无需知道用户的账号及密码,