题目链接:http://vjudge.net/problem/HDU-1098
求解思路:
f(x)=5*x^13+13*x^5+k*a*x;
其中题中"f(x)|65"表示对于任意的整数x,f(x)都能被65整除.所以不难推断:f(x+1)|65也成立.
f(x+1)=5*(x+1)^13+13*(x+1)^5+k*a*(x+1),
根据二项式定理:(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)*b+C(n,2)a^(n-2)*b^2+...+C(n,n)b^n
得:f(x+1)=5*(C(13,0)+C(13,1)*x+C(13,2)*x^2+...+C(13,13)*x^13) + 13*(C(5,0)+C(5,1)*x+...+C(5,5)*x^5) + k*a*(x+1);
从中提取出f(x)后得:
f(x+1)=f(x)+5*(C(13,0) + C(13,1)*x+C(13,2)*x^2+...+C(13,12)*x^12) + 13*(C(5,0)+C(5,1)*x+...+C(5,4)*x^4) + k*a;
不难看出出了5*C(13,0) 、13*C(5,0)和k*a三项以外,其他项无论x取任意整数都能被65整除,所以如果5*C(13,0) +13*C(5,0)+k*a(相当于18+k*a)能被65整除的话,就可以得出f(x+1)|65了。
再验证一下f(1)=5+13+k*a=18+k*a同样适用。
所以最终的问题就是给定一个非负整数k,使得(18+k*a)|65,输出满足此条件的最小的非负整数a。
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 using namespace std; 5 6 int main() 7 { 8 int k,a; 9 while(cin>>k) 10 { 11 if(k%65==0) 12 { 13 printf("no\n"); 14 continue; 15 } 16 for(a=0;a<65;++a) 17 { 18 if((a*k)%65==47) 19 { 20 printf("%d\n",a); 21 break; 22 } 23 } 24 if(a==65) printf("no\n"); 25 } 26 27 return 0; 28 }
(HDU)1098 -- Ignatius's puzzle(Ignatius的困惑)
时间: 2024-10-22 08:55:49