一步一步写算法(之prim算法 上)

原文:一步一步写算法(之prim算法 上)

【 声明:版权所有,欢迎转载,请勿用于商业用途。  联系信箱:feixiaoxing @163.com】

前面我们讨论了图的创建、添加、删除和保存等问题。今天我们将继续讨论图的一些其他问题,比如说如何在图的环境下构建最小生成树。为什么要构建最小生成树呢?其实原理很简单。打个比方,现在某一个乡镇有n个村,那么这n个村肯定是联通的。现在我们打算在各个村之间搭建网线,实现村村通的工程。那么有什么办法可以实现村村互通,同时又使得最后的总距离最小呢?要达到这个目的,就必须在已有的图中构建最小生成树。

生成最小生成树的方法很多,prim方法就是其中的一种。那么生成最小生成树的基本步骤是什么呢?很简单,听我慢慢道来:

1)以某一个点开始,寻找当前该点可以访问的所有的边;

2)在已经寻找的边中发现最小边,这个边必须有一个点还没有访问过,将还没有访问的点加入我们的集合,记录添加的边;

3)寻找当前集合可以访问的所有边,重复2的过程,直到没有新的点可以加入;

4)此时由所有边构成的树即为最小生成树。

那么,代码应该怎么编写呢?朋友们可以自己好好思考一下。

a)首先,我们定义基本的数据结构。

typedef struct _DIR_LINE
{
	int start;
	int end;
	int weight;
	struct _DIR_LINE* next;
}DIR_LINE;

typedef struct _MINI_GENERATE_TREE
{
	int node_num;
	int line_num;
	int* pNode;
	DIR_LINE* pLine;
}MINI_GENERATE_TREE;

b)DIR_LINE的基本操作

STATUS insert_line_into_queue(DIR_LINE** ppLine, int start, int end, int weight)
{
	DIR_LINE* pLine;

	if(NULL == ppLine)
		return FALSE;

	if(NULL == *ppLine){
		*ppLine = create_new_dir_line(start, end, weight);
		return TRUE;
	}

	pLine = create_new_dir_line(start, end, weight);
	pLine->next = *ppLine;
	*ppLine = pLine;
	return TRUE;
}

STATUS delete_line_from_queue(DIR_LINE** ppLine, DIR_LINE* pLine)
{
	DIR_LINE* prev;

	if(NULL == ppLine || NULL == *ppLine || NULL == pLine)
		return FALSE;

	if(pLine == *ppLine){
		*ppLine = pLine->next;
		goto final;
	}

	prev = *ppLine;
	while(pLine != prev->next)
		prev = prev->next;
	prev->next = pLine->next;

final:
	free(pLine);
	return TRUE;
}

【未完,待续】

时间: 2024-10-14 11:27:35

一步一步写算法(之prim算法 上)的相关文章

hdu 1162 Eddy's picture (Kruskal算法,prim算法,最小生成树)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1162 [题目大意] 给你n个点的坐标,让你找到联通n个点的一种方法.保证联通的线路最短,典型的最小生成树问题. 方法一 . 通过不断找到最小的边来找到终于结果. Kruskal 算法 #include <iostream> #include <algorithm> #include <cstdio> #include <cmath> using namespac

hdu 1162 Eddy&#39;s picture (Kruskal算法,prim算法,最小生成树)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1162 [题目大意] 给你n个点的坐标,让你找到联通n个点的一种方法,保证联通的线路最短,典型的最小生成树问题. 方法一 , 通过不断找到最小的边来找到最终结果. Kruskal 算法 #include <iostream> #include <algorithm> #include <cstdio> #include <cmath> using namespac

图基本算法 最小生成树 Prim算法(邻接表+优先队列STL)

这篇文章是对<算法导论>上Prim算法求无向连通图最小生成树的一个总结,其中有关于我的一点点小看法. 最小生成树的具体问题可以用下面的语言阐述: 输入:一个无向带权图G=(V,E),对于每一条边(u, v)属于E,都有一个权值w. 输出:这个图的最小生成树,即一棵连接所有顶点的树,且这棵树中的边的权值的和最小. 举例如下,求下图的最小生成树: 这个问题是求解一个最优解的过程.那么怎样才算最优呢? 首先我们考虑最优子结构:如果一个问题的最优解中包含了子问题的最优解,则该问题具有最优子结构. 最小

最小生成树算法 1.Prim算法

最小生成树(MST):一个有N个点的图,边一定是大于等于N-1条边的.在这些边中选择N-1条出来,连接所有N个点.这N-1条边的边权之和是所有方案中最小的. Prim算法的时间复杂度时O(n^2)的,因此适用于稠密图的最小生成树,如果是稀疏图的情况下采用Kruskal算法更好. Prim算法蕴含了贪心的思想,其原理是把图中所有的点分成两个集合,一个集合(V)是已经在生成树中的点,另一个集合(G)是不在生成树中的点,然后寻找起点在V中,终点在G中的边中权值最小的边加入生成树,然后把终点从G移到V中

转 最小生成树(kruskal 算法 和prim算法)

链接:http://blog.csdn.net/weinierbian/article/details/8059129/ 给定一个带权的无向连通图,如何选取一棵生成树,使树上所有边上权的总和为最小,这叫最小生成树. 求最小生成树的算法(1) 克鲁斯卡尔算法图的存贮结构采用边集数组,且权值相等的边在数组中排列次序可以是任意的.该方法对于边相对比较多的不是很实用,浪费时间.(2) 普里姆算法图的存贮结构采用邻接矩阵.此方法是按各个顶点连通的步骤进行,需要用一个顶点集合,开始为空集,以后将以连通的顶点

Dijkstra算法与Prim算法辨析

这两个算法真的很像,尽管它们的用处截然不同. Dijkstra是找单源非负的最短路径. Prim是找最小生成树. Dijkstra算法都是找当前标记集合点再扩一条边所形成的最短路径,然后更新标记点集,外扩路径集. Prim是找当前标记集合点再扩一条边中所形成的的最短边,然后更新标记点集,外扩边集. 所以细节上是有不同的. Dijkstra复杂度O(N2), Prim O(eloge).

数据结构与算法系列----最小生成树(Prim算法&amp;amp;Kruskal算法)

 一:Prim算法       1.概览 普里姆算法(Prim算法).图论中的一种算法.可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中.不但包含了连通图里的全部顶点(英语:Vertex (graph theory)).且其全部边的权值之和亦为最小. 该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现.并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现:1959年,艾兹格·迪科斯彻再次发现了该

【最小生成树】prim算法

算法分析的一般步骤: 1.文字描述:如果一个算法文字描述不清楚,就说明思路不清楚,也不可能写好. prim算法是实现图的最小生成树.既然是图,就假设包含n个顶点,m条边.prim算法是从顶点出发的,其算法时间复杂度与顶点数目有关系. (注意:prim算法适合稠密图,其时间复杂度为O(n^2),其时间复杂度与边得数目无关,而kruskal算法的时间复杂度为O(eloge)跟边的数目有关,适合稀疏图.) 算法思路:从某个顶点开始,假设v0,此时v0属于最小生成树结点中的一个元素,该集合假设u,剩下的

[迷宫中的算法实践]迷宫生成算法&mdash;&mdash;Prim算法

       普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小.该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现:并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现:1959年,艾兹格·迪科斯彻再次发现了该算法.因此,在某些场合,普里姆

数据结构(C实现)------- 最小生成树之Prim算法

[本文是自己学习所做笔记,欢迎转载,但请注明出处:http://blog.csdn.net/jesson20121020] 算法描述 如果连通图是一个网,则称该网中所有生成树中权值总和最小的生成树为最小生成树,也称最小代价生成树.利用Prim算法构造的最小生成树方法思想: 假设G=(V,E)是一个具有n个顶点的连通网,顶点集V={v1,v2,...,vn}.设所求的最小生成树T=(U,TE),其中U是T的顶点集,TE是T的边集,U和TE初值均为空集. Prim算法的基本思想如下:首先从V中任取一