KVM源代码解读:linux-3.17.4\arch\x86\include\asm\kvm_host.h

/*

* Kernel-based Virtual Machine driver for Linux

*

* This header defines architecture specific interfaces, x86 version

*

* This work is licensed under the terms of the GNU GPL, version 2.  See

* the COPYING file in the top-level directory.

*

*/

#ifndef _ASM_X86_KVM_HOST_H

#define _ASM_X86_KVM_HOST_H

#include <linux/types.h>

#include <linux/mm.h>

#include <linux/mmu_notifier.h>

#include <linux/tracepoint.h>

#include <linux/cpumask.h>

#include <linux/irq_work.h>

#include <linux/kvm.h>

#include <linux/kvm_para.h>

#include <linux/kvm_types.h>

#include <linux/perf_event.h>

#include <linux/pvclock_gtod.h>

#include <linux/clocksource.h>

#include <asm/pvclock-abi.h>

#include <asm/desc.h>

#include <asm/mtrr.h>

#include <asm/msr-index.h>

#include <asm/asm.h>

#define KVM_MAX_VCPUS 255

#define KVM_SOFT_MAX_VCPUS 160

#define KVM_USER_MEM_SLOTS 125

/* memory slots that are not exposed to userspace */

//内存槽对于用户空间透明

#define KVM_PRIVATE_MEM_SLOTS 3

#define KVM_MEM_SLOTS_NUM (KVM_USER_MEM_SLOTS + KVM_PRIVATE_MEM_SLOTS)

#define KVM_MMIO_SIZE 16

#define KVM_PIO_PAGE_OFFSET 1

#define KVM_COALESCED_MMIO_PAGE_OFFSET 2

#define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS

#define CR0_RESERVED_BITS                                               \

(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \

| X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \

| X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))

#define CR3_L_MODE_RESERVED_BITS 0xFFFFFF0000000000ULL

#define CR4_RESERVED_BITS                                               \

(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\

| X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \

| X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \

| X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \

| X86_CR4_OSXMMEXCPT | X86_CR4_VMXE | X86_CR4_SMAP))

#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)

#define INVALID_PAGE (~(hpa_t)0)

#define VALID_PAGE(x) ((x) != INVALID_PAGE)

#define UNMAPPED_GVA (~(gpa_t)0)

/* KVM Hugepage definitions for x86 */

//kvm大页定义

#define KVM_NR_PAGE_SIZES    3

#define KVM_HPAGE_GFN_SHIFT(x)  (((x) - 1) * 9)

#define KVM_HPAGE_SHIFT(x)   (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))

#define KVM_HPAGE_SIZE(x)      (1UL << KVM_HPAGE_SHIFT(x))

#define KVM_HPAGE_MASK(x)    (~(KVM_HPAGE_SIZE(x) - 1))

#define KVM_PAGES_PER_HPAGE(x)  (KVM_HPAGE_SIZE(x) / PAGE_SIZE)

static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)

{

/* KVM_HPAGE_GFN_SHIFT(PT_PAGE_TABLE_LEVEL) must be 0. */

return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -

(base_gfn >> KVM_HPAGE_GFN_SHIFT(level));

}

#define SELECTOR_TI_MASK (1 << 2)

#define SELECTOR_RPL_MASK 0x03

#define IOPL_SHIFT 12

#define KVM_PERMILLE_MMU_PAGES 20

#define KVM_MIN_ALLOC_MMU_PAGES 64

#define KVM_MMU_HASH_SHIFT 10

#define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)

#define KVM_MIN_FREE_MMU_PAGES 5

#define KVM_REFILL_PAGES 25

#define KVM_MAX_CPUID_ENTRIES 80

#define KVM_NR_FIXED_MTRR_REGION 88

#define KVM_NR_VAR_MTRR 8

#define ASYNC_PF_PER_VCPU 64

struct kvm_vcpu;

struct kvm;

struct kvm_async_pf;

//寄存器枚举类型

enum kvm_reg {

VCPU_REGS_RAX = 0,

VCPU_REGS_RCX = 1,

VCPU_REGS_RDX = 2,

VCPU_REGS_RBX = 3,

VCPU_REGS_RSP = 4,

VCPU_REGS_RBP = 5,

VCPU_REGS_RSI = 6,

VCPU_REGS_RDI = 7,

#ifdef CONFIG_X86_64

VCPU_REGS_R8 = 8,

VCPU_REGS_R9 = 9,

VCPU_REGS_R10 = 10,

VCPU_REGS_R11 = 11,

VCPU_REGS_R12 = 12,

VCPU_REGS_R13 = 13,

VCPU_REGS_R14 = 14,

VCPU_REGS_R15 = 15,

#endif

VCPU_REGS_RIP,

NR_VCPU_REGS

};

enum kvm_reg_ex {

VCPU_EXREG_PDPTR = NR_VCPU_REGS,

VCPU_EXREG_CR3,

VCPU_EXREG_RFLAGS,

VCPU_EXREG_SEGMENTS,

};

enum {

VCPU_SREG_ES,

VCPU_SREG_CS,

VCPU_SREG_SS,

VCPU_SREG_DS,

VCPU_SREG_FS,

VCPU_SREG_GS,

VCPU_SREG_TR,

VCPU_SREG_LDTR,

};

#include <asm/kvm_emulate.h>

#define KVM_NR_MEM_OBJS 40

#define KVM_NR_DB_REGS   4

#define DR6_BD      (1 << 13)

#define DR6_BS      (1 << 14)

#define DR6_RTM         (1 << 16)

#define DR6_FIXED_1    0xfffe0ff0

#define DR6_INIT    0xffff0ff0

#define DR6_VOLATILE  0x0001e00f

#define DR7_BP_EN_MASK   0x000000ff

#define DR7_GE      (1 << 9)

#define DR7_GD           (1 << 13)

#define DR7_FIXED_1    0x00000400

#define DR7_VOLATILE  0xffff2bff

/* apic attention bits */

#define KVM_APIC_CHECK_VAPIC     0

/*

* The following bit is set with PV-EOI, unset on EOI.

* We detect PV-EOI changes by guest by comparing

* this bit with PV-EOI in guest memory.

* See the implementation in apic_update_pv_eoi.

*/

#define KVM_APIC_PV_EOI_PENDING     1

/*

* We don‘t want allocation failures within the mmu code, so we preallocate

* enough memory for a single page fault in a cache.

*/

struct kvm_mmu_memory_cache {

int nobjs;

void *objects[KVM_NR_MEM_OBJS];

};

//kvm内存管理单元页

/*

* kvm_mmu_page_role, below, is defined as:

*

*   bits 0:3 - total guest paging levels (2-4, or zero for real mode)

*   bits 4:7 - page table level for this shadow (1-4)

*   bits 8:9 - page table quadrant for 2-level guests

*   bit   16 - direct mapping of virtual to physical mapping at gfn

*              used for real mode and two-dimensional paging

*   bits 17:19 - common access permissions for all ptes in this shadow page

在这个影子页表中的所有页表项的公共访问权限

*/

union kvm_mmu_page_role {

unsigned word;

struct {

unsigned level:4;

unsigned cr4_pae:1;

unsigned quadrant:2;

unsigned pad_for_nice_hex_output:6;

unsigned direct:1;

unsigned access:3;

unsigned invalid:1;

unsigned nxe:1;

unsigned cr0_wp:1;

unsigned smep_andnot_wp:1;

};

};

//kvm内存管理单元页数据结构

struct kvm_mmu_page {

struct list_head link;

struct hlist_node hash_link;//哈希链表

/*

* The following two entries are used to key the shadow page in the

* hash table.

*/

gfn_t gfn;

union kvm_mmu_page_role role;

u64 *spt;

/* hold the gfn of each spte inside spt */

gfn_t *gfns;

bool unsync;

int root_count;          /* Currently serving as active root */

unsigned int unsync_children;

unsigned long parent_ptes;   /* Reverse mapping for parent_pte */

/* The page is obsolete if mmu_valid_gen != kvm->arch.mmu_valid_gen.  */

unsigned long mmu_valid_gen;

DECLARE_BITMAP(unsync_child_bitmap, 512);

#ifdef CONFIG_X86_32

/*

* Used out of the mmu-lock to avoid reading spte values while an

* update is in progress; see the comments in __get_spte_lockless().

*/

int clear_spte_count;

#endif

/* Number of writes since the last time traversal visited this page.  */

int write_flooding_count;

};

struct kvm_pio_request {

unsigned long count;

int in;

int port;

int size;

};

/*

* x86 supports 3 paging modes (4-level 64-bit, 3-level 64-bit, and 2-level

* 32-bit).  The kvm_mmu structure abstracts the details of the current mmu

* mode.

*/

//x86支持3种页表模式

//kvm内存管理单元数据结构

struct kvm_mmu {

void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long root);

unsigned long (*get_cr3)(struct kvm_vcpu *vcpu);

u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);

int (*page_fault)(struct kvm_vcpu *vcpu, gva_t gva, u32 err,

bool prefault);

void (*inject_page_fault)(struct kvm_vcpu *vcpu,

struct x86_exception *fault);

gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t gva, u32 access,

struct x86_exception *exception);

gpa_t (*translate_gpa)(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access);

int (*sync_page)(struct kvm_vcpu *vcpu,

struct kvm_mmu_page *sp);

void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva);

void (*update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,

u64 *spte, const void *pte);

hpa_t root_hpa;

int root_level;

int shadow_root_level;

union kvm_mmu_page_role base_role;

bool direct_map;

/*

* Bitmap; bit set = permission fault

* Byte index: page fault error code [4:1]

* Bit index: pte permissions in ACC_* format

*/

u8 permissions[16];

u64 *pae_root;

u64 *lm_root;

u64 rsvd_bits_mask[2][4];

u64 bad_mt_xwr;

/*

* Bitmap: bit set = last pte in walk

* index[0:1]: level (zero-based)

* index[2]: pte.ps

*/

u8 last_pte_bitmap;

bool nx;

u64 pdptrs[4]; /* pae物理地址扩展 */

};

enum pmc_type {

KVM_PMC_GP = 0,

KVM_PMC_FIXED,

};

struct kvm_pmc {

enum pmc_type type;

u8 idx;

u64 counter;

u64 eventsel;

struct perf_event *perf_event;

struct kvm_vcpu *vcpu;

};

struct kvm_pmu {

unsigned nr_arch_gp_counters;

unsigned nr_arch_fixed_counters;

unsigned available_event_types;

u64 fixed_ctr_ctrl;

u64 global_ctrl;

u64 global_status;

u64 global_ovf_ctrl;

u64 counter_bitmask[2];

u64 global_ctrl_mask;

u64 reserved_bits;

u8 version;

struct kvm_pmc gp_counters[INTEL_PMC_MAX_GENERIC];

struct kvm_pmc fixed_counters[INTEL_PMC_MAX_FIXED];

struct irq_work irq_work;

u64 reprogram_pmi;

};

enum {

KVM_DEBUGREG_BP_ENABLED = 1,

KVM_DEBUGREG_WONT_EXIT = 2,

};

//kvm中的vcpu的结构数据结构

struct kvm_vcpu_arch {

/*

* rip and regs accesses must go through

* kvm_{register,rip}_{read,write} functions.

*/

unsigned long regs[NR_VCPU_REGS];

u32 regs_avail;

u32 regs_dirty;

unsigned long cr0;

unsigned long cr0_guest_owned_bits;

unsigned long cr2;

unsigned long cr3;

unsigned long cr4;

unsigned long cr4_guest_owned_bits;

unsigned long cr8;

u32 hflags;

u64 efer;

u64 apic_base;

struct kvm_lapic *apic;    /* kernel irqchip context 内核中断请求芯片上下文*/

unsigned long apic_attention;

int32_t apic_arb_prio;

int mp_state;

u64 ia32_misc_enable_msr;

bool tpr_access_reporting;

/*

* Paging state of the vcpu

*

* If the vcpu runs in guest mode with two level paging this still saves

* the paging mode of the l1 guest. This context is always used to

* handle faults.

如果vcpu运行在2级页表的客户模式,它仍然保存页表的1级

客户模式。这个上下文总是用来处理错误。

*/

struct kvm_mmu mmu;

/*

* Paging state of an L2 guest (used for nested npt)

*2级客户的页表状态,用于网状页表npt。

* This context will save all necessary information to walk page tables

* of the an L2 guest. This context is only initialized for page table

* walking and not for faulting since we never handle l2 page faults on

* the host.

这个上下文将会保存所有的必要信息来运行

一个2级客户的页表 。它只初始化页表而不是

处理错误因为我们从来不在宿主机上处理2级

页表的错误。

*/

struct kvm_mmu nested_mmu;

/*

* Pointer to the mmu context currently used for

* gva_to_gpa translations.

用于gva到gpa的地址翻译

*/

struct kvm_mmu *walk_mmu;

struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;

struct kvm_mmu_memory_cache mmu_page_cache;

struct kvm_mmu_memory_cache mmu_page_header_cache;

struct fpu guest_fpu;

u64 xcr0;

u64 guest_supported_xcr0;

u32 guest_xstate_size;

struct kvm_pio_request pio;

void *pio_data;

u8 event_exit_inst_len;

struct kvm_queued_exception {

bool pending;

bool has_error_code;

bool reinject;

u8 nr;

u32 error_code;

} exception;

struct kvm_queued_interrupt {

bool pending;

bool soft;

u8 nr;

} interrupt;

int halt_request; /* real mode on Intel only */

int cpuid_nent;

struct kvm_cpuid_entry2 cpuid_entries[KVM_MAX_CPUID_ENTRIES];

/* emulate context */

struct x86_emulate_ctxt emulate_ctxt;

bool emulate_regs_need_sync_to_vcpu;

bool emulate_regs_need_sync_from_vcpu;

int (*complete_userspace_io)(struct kvm_vcpu *vcpu);

gpa_t time;

struct pvclock_vcpu_time_info hv_clock;

unsigned int hw_tsc_khz;

struct gfn_to_hva_cache pv_time;

bool pv_time_enabled;

/* set guest stopped flag in pvclock flags field */

bool pvclock_set_guest_stopped_request;

struct {

u64 msr_val;

u64 last_steal;

u64 accum_steal;

struct gfn_to_hva_cache stime;

struct kvm_steal_time steal;

} st;

u64 last_guest_tsc;

u64 last_host_tsc;

u64 tsc_offset_adjustment;

u64 this_tsc_nsec;

u64 this_tsc_write;

u64 this_tsc_generation;

bool tsc_catchup;

bool tsc_always_catchup;

s8 virtual_tsc_shift;

u32 virtual_tsc_mult;

u32 virtual_tsc_khz;

s64 ia32_tsc_adjust_msr;

//对不可屏蔽中断的操作

atomic_t nmi_queued;  /* unprocessed asynchronous NMIs 未处理的异步不可屏蔽中断*/

unsigned nmi_pending; /* NMI queued after currently running handler */

bool nmi_injected;    /* Trying to inject an NMI this entry */

struct mtrr_state_type mtrr_state;

u64 pat;

unsigned switch_db_regs;

unsigned long db[KVM_NR_DB_REGS];

unsigned long dr6;

unsigned long dr7;

unsigned long eff_db[KVM_NR_DB_REGS];

unsigned long guest_debug_dr7;

u64 mcg_cap;

u64 mcg_status;

u64 mcg_ctl;

u64 *mce_banks;

/* Cache MMIO info */

u64 mmio_gva;

unsigned access;

gfn_t mmio_gfn;

u64 mmio_gen;

struct kvm_pmu pmu;

/* used for guest single stepping over the given code position */

unsigned long singlestep_rip;

/* fields used by HYPER-V emulation */

u64 hv_vapic;

cpumask_var_t wbinvd_dirty_mask;

unsigned long last_retry_eip;

unsigned long last_retry_addr;

struct {

bool halted;

gfn_t gfns[roundup_pow_of_two(ASYNC_PF_PER_VCPU)];

struct gfn_to_hva_cache data;

u64 msr_val;

u32 id;

bool send_user_only;

} apf;

/* OSVW MSRs (AMD only) */

struct {

u64 length;

u64 status;

} osvw;

struct {

u64 msr_val;

struct gfn_to_hva_cache data;

} pv_eoi;

/*

* Indicate whether the access faults on its page table in guest

* which is set when fix page fault and used to detect unhandeable

* instruction.

*/

bool write_fault_to_shadow_pgtable;

/* set at EPT violation at this point */

unsigned long exit_qualification;

/* pv related host specific info */

struct {

bool pv_unhalted;

} pv;

};

struct kvm_lpage_info {

int write_count;

};

struct kvm_arch_memory_slot {

unsigned long *rmap[KVM_NR_PAGE_SIZES];

struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];

};

//kvm高级可编程中断控制器位图

struct kvm_apic_map {

struct rcu_head rcu;

u8 ldr_bits;

/* fields bellow are used to decode ldr values in different modes */

u32 cid_shift, cid_mask, lid_mask;

struct kvm_lapic *phys_map[256];

/* first index is cluster id second is cpu id in a cluster */

struct kvm_lapic *logical_map[16][16];

};

//kvm结构的数据结构,用来描述单个虚拟机的全局状态,如内存管理单元

struct kvm_arch {

unsigned int n_used_mmu_pages;

unsigned int n_requested_mmu_pages;

unsigned int n_max_mmu_pages;

unsigned int indirect_shadow_pages;

unsigned long mmu_valid_gen;

struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];

/*

* Hash table of struct kvm_mmu_page.

*/

struct list_head active_mmu_pages;

struct list_head zapped_obsolete_pages;

struct list_head assigned_dev_head;

struct iommu_domain *iommu_domain;

bool iommu_noncoherent;

#define __KVM_HAVE_ARCH_NONCOHERENT_DMA

atomic_t noncoherent_dma_count;

struct kvm_pic *vpic;

struct kvm_ioapic *vioapic;

struct kvm_pit *vpit;

int vapics_in_nmi_mode;

struct mutex apic_map_lock;

struct kvm_apic_map *apic_map;

unsigned int tss_addr;

struct page *apic_access_page;

gpa_t wall_clock;

struct page *ept_identity_pagetable;

bool ept_identity_pagetable_done;

gpa_t ept_identity_map_addr;

unsigned long irq_sources_bitmap;

s64 kvmclock_offset;

raw_spinlock_t tsc_write_lock;

u64 last_tsc_nsec;

u64 last_tsc_write;

u32 last_tsc_khz;

u64 cur_tsc_nsec;

u64 cur_tsc_write;

u64 cur_tsc_offset;

u64 cur_tsc_generation;

int nr_vcpus_matched_tsc;

spinlock_t pvclock_gtod_sync_lock;

bool use_master_clock;

u64 master_kernel_ns;

cycle_t master_cycle_now;

struct delayed_work kvmclock_update_work;

struct delayed_work kvmclock_sync_work;

struct kvm_xen_hvm_config xen_hvm_config;

/* fields used by HYPER-V emulation */

u64 hv_guest_os_id;

u64 hv_hypercall;

u64 hv_tsc_page;

#ifdef CONFIG_KVM_MMU_AUDIT

int audit_point;

#endif

};

//用来描述虚拟机的状态

struct kvm_vm_stat {

u32 mmu_shadow_zapped;//影子页表关闭

u32 mmu_pte_write;//页表项写

u32 mmu_pte_updated;//更新

u32 mmu_pde_zapped;

u32 mmu_flooded;

u32 mmu_recycled;

u32 mmu_cache_miss;//缓存miss

u32 mmu_unsync;

u32 remote_tlb_flush;//TLB冲洗

u32 lpages;

};

//vcpu的状态

struct kvm_vcpu_stat {

u32 pf_fixed;

u32 pf_guest;

u32 tlb_flush;

u32 invlpg;

u32 exits;

u32 io_exits;

u32 mmio_exits;

u32 signal_exits;

u32 irq_window_exits;

u32 nmi_window_exits;

u32 halt_exits;

u32 halt_wakeup;

u32 request_irq_exits;

u32 irq_exits;

u32 host_state_reload;

u32 efer_reload;

u32 fpu_reload;

u32 insn_emulation;

u32 insn_emulation_fail;

u32 hypercalls;

u32 irq_injections;

u32 nmi_injections;

};

struct x86_instruction_info;

//模式特殊寄存器数据

struct msr_data {

bool host_initiated;

u32 index;

u64 data;

};

/*kvm_x86_ops结构体中包含了针对具体的CPU架构进行虚拟化时的函数指针调用

该结构体主要包含以下几种类型的操作:CPU VMM状态硬件初始化。vCPU创建与管理。中断管理。寄存器管理。时钟管理。

kvm_x86_ops结构体中的所有成员都是函数指针,在kvm-intel.ko和kvm-amd.ko这两个不同的模块中,针对各自的体系提供了不同的函数。在KVM的初始化过程和后续的运行过程中,KVM子系统的代码将通过该结构体的函数进行实际的硬件操作。

kvm_x86_ops结构体通过静态初始化。针对amd架构的初始化代码在svm.c中,针对Intel架构的初始化代码在vmx.c中。

*/

struct kvm_x86_ops {

int (*cpu_has_kvm_support)(void);          /* __init */

int (*disabled_by_bios)(void);             /* __init */

int (*hardware_enable)(void *dummy);

void (*hardware_disable)(void *dummy);

void (*check_processor_compatibility)(void *rtn);

int (*hardware_setup)(void);               /* __init */

void (*hardware_unsetup)(void);            /* __exit */

bool (*cpu_has_accelerated_tpr)(void);

void (*cpuid_update)(struct kvm_vcpu *vcpu);

/* Create, but do not attach this VCPU */

//创建vcpu

struct kvm_vcpu *(*vcpu_create)(struct kvm *kvm, unsigned id);

void (*vcpu_free)(struct kvm_vcpu *vcpu);

void (*vcpu_reset)(struct kvm_vcpu *vcpu);

void (*prepare_guest_switch)(struct kvm_vcpu *vcpu);

void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);

void (*vcpu_put)(struct kvm_vcpu *vcpu);

void (*update_db_bp_intercept)(struct kvm_vcpu *vcpu);

int (*get_msr)(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata);

int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);

u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);

void (*get_segment)(struct kvm_vcpu *vcpu,

struct kvm_segment *var, int seg);

int (*get_cpl)(struct kvm_vcpu *vcpu);

void (*set_segment)(struct kvm_vcpu *vcpu,

struct kvm_segment *var, int seg);

void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);

void (*decache_cr0_guest_bits)(struct kvm_vcpu *vcpu);

void (*decache_cr3)(struct kvm_vcpu *vcpu);

void (*decache_cr4_guest_bits)(struct kvm_vcpu *vcpu);

void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);

void (*set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);

int (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);

void (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);

void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);

void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);

void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);

void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);

u64 (*get_dr6)(struct kvm_vcpu *vcpu);

void (*set_dr6)(struct kvm_vcpu *vcpu, unsigned long value);

void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);

void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);

void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);

unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);

void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);

void (*fpu_activate)(struct kvm_vcpu *vcpu);

void (*fpu_deactivate)(struct kvm_vcpu *vcpu);

void (*tlb_flush)(struct kvm_vcpu *vcpu);

void (*run)(struct kvm_vcpu *vcpu);

int (*handle_exit)(struct kvm_vcpu *vcpu);

void (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);

void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);

u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);

void (*patch_hypercall)(struct kvm_vcpu *vcpu,

unsigned char *hypercall_addr);

void (*set_irq)(struct kvm_vcpu *vcpu);

void (*set_nmi)(struct kvm_vcpu *vcpu);

void (*queue_exception)(struct kvm_vcpu *vcpu, unsigned nr,

bool has_error_code, u32 error_code,

bool reinject);

void (*cancel_injection)(struct kvm_vcpu *vcpu);

int (*interrupt_allowed)(struct kvm_vcpu *vcpu);

int (*nmi_allowed)(struct kvm_vcpu *vcpu);

bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);

void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);

void (*enable_nmi_window)(struct kvm_vcpu *vcpu);

void (*enable_irq_window)(struct kvm_vcpu *vcpu);

void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);

int (*vm_has_apicv)(struct kvm *kvm);

void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);

void (*hwapic_isr_update)(struct kvm *kvm, int isr);

void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);

void (*set_virtual_x2apic_mode)(struct kvm_vcpu *vcpu, bool set);

void (*deliver_posted_interrupt)(struct kvm_vcpu *vcpu, int vector);

void (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);

int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);

int (*get_tdp_level)(void);

u64 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);

int (*get_lpage_level)(void);

bool (*rdtscp_supported)(void);

bool (*invpcid_supported)(void);

void (*adjust_tsc_offset)(struct kvm_vcpu *vcpu, s64 adjustment, bool host);

void (*set_tdp_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);

void (*set_supported_cpuid)(u32 func, struct kvm_cpuid_entry2 *entry);

bool (*has_wbinvd_exit)(void);

void (*set_tsc_khz)(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale);

u64 (*read_tsc_offset)(struct kvm_vcpu *vcpu);

void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);

u64 (*compute_tsc_offset)(struct kvm_vcpu *vcpu, u64 target_tsc);

u64 (*read_l1_tsc)(struct kvm_vcpu *vcpu, u64 host_tsc);

void (*get_exit_info)(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2);

int (*check_intercept)(struct kvm_vcpu *vcpu,

struct x86_instruction_info *info,

enum x86_intercept_stage stage);

void (*handle_external_intr)(struct kvm_vcpu *vcpu);

bool (*mpx_supported)(void);

int (*check_nested_events)(struct kvm_vcpu *vcpu, bool external_intr);

};

struct kvm_arch_async_pf {

u32 token;

gfn_t gfn;

unsigned long cr3;

bool direct_map;

};

extern struct kvm_x86_ops *kvm_x86_ops;

static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,

s64 adjustment)

{

kvm_x86_ops->adjust_tsc_offset(vcpu, adjustment, false);

}

static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)

{

kvm_x86_ops->adjust_tsc_offset(vcpu, adjustment, true);

}

//针对mmu的操作

int kvm_mmu_module_init(void);

void kvm_mmu_module_exit(void);

void kvm_mmu_destroy(struct kvm_vcpu *vcpu);

int kvm_mmu_create(struct kvm_vcpu *vcpu);

void kvm_mmu_setup(struct kvm_vcpu *vcpu);

void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,

u64 dirty_mask, u64 nx_mask, u64 x_mask);

void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);

void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot);

void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,

struct kvm_memory_slot *slot,

gfn_t gfn_offset, unsigned long mask);

void kvm_mmu_zap_all(struct kvm *kvm);

void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm);

unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm);

void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages);

int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3);

int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,

const void *val, int bytes);

u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn);

extern bool tdp_enabled;

u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);

/* control of guest tsc rate supported? */

extern bool kvm_has_tsc_control;

/* minimum supported tsc_khz for guests */

extern u32  kvm_min_guest_tsc_khz;

/* maximum supported tsc_khz for guests */

extern u32  kvm_max_guest_tsc_khz;

//模拟的结果枚举类型

enum emulation_result {

EMULATE_DONE,         /* no further processing */

EMULATE_USER_EXIT,    /* kvm_run ready for userspace exit */

EMULATE_FAIL,         /* can‘t emulate this instruction */

};

#define EMULTYPE_NO_DECODE     (1 << 0)

#define EMULTYPE_TRAP_UD         (1 << 1)

#define EMULTYPE_SKIP               (1 << 2)

#define EMULTYPE_RETRY             (1 << 3)

#define EMULTYPE_NO_REEXECUTE      (1 << 4)

int x86_emulate_instruction(struct kvm_vcpu *vcpu, unsigned long cr2,

int emulation_type, void *insn, int insn_len);

static inline int emulate_instruction(struct kvm_vcpu *vcpu,

int emulation_type)

{

return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);

}

void kvm_enable_efer_bits(u64);

bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);

int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *data);

int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr);

struct x86_emulate_ctxt;

int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port);

void kvm_emulate_cpuid(struct kvm_vcpu *vcpu);

int kvm_emulate_halt(struct kvm_vcpu *vcpu);

int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);

void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);

int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);

void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector);

int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,

int reason, bool has_error_code, u32 error_code);

int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);

int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);

int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);

int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);

int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);

int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);

unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);

void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);

void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l);

int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr);

int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata);

int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);

unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);

void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);

bool kvm_rdpmc(struct kvm_vcpu *vcpu);

void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);

void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);

void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);

void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);

void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);

int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,

gfn_t gfn, void *data, int offset, int len,

u32 access);

void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);

bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);

static inline int __kvm_irq_line_state(unsigned long *irq_state,

int irq_source_id, int level)

{

/* Logical OR for level trig interrupt */

if (level)

__set_bit(irq_source_id, irq_state);

else

__clear_bit(irq_source_id, irq_state);

return !!(*irq_state);

}

int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);

void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);

void kvm_inject_nmi(struct kvm_vcpu *vcpu);

int fx_init(struct kvm_vcpu *vcpu);

void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu);

void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,

const u8 *new, int bytes);

int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);

int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva);

void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu);

int kvm_mmu_load(struct kvm_vcpu *vcpu);

void kvm_mmu_unload(struct kvm_vcpu *vcpu);

void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);

gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access);

gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,

struct x86_exception *exception);

gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,

struct x86_exception *exception);

gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,

struct x86_exception *exception);

gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,

struct x86_exception *exception);

int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);

int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t gva, u32 error_code,

void *insn, int insn_len);

void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);

void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu);

void kvm_enable_tdp(void);

void kvm_disable_tdp(void);

static inline gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)

{

return gpa;

}

static inline struct kvm_mmu_page *page_header(hpa_t shadow_page)

{

struct page *page = pfn_to_page(shadow_page >> PAGE_SHIFT);

return (struct kvm_mmu_page *)page_private(page);

}

static inline u16 kvm_read_ldt(void)

{

u16 ldt;

asm("sldt %0" : "=g"(ldt));

return ldt;

}

static inline void kvm_load_ldt(u16 sel)

{

asm("lldt %0" : : "rm"(sel));

}

#ifdef CONFIG_X86_64

static inline unsigned long read_msr(unsigned long msr)

{

u64 value;

rdmsrl(msr, value);

return value;

}

#endif

static inline u32 get_rdx_init_val(void)

{

return 0x600; /* P6 family */

}

static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)

{

kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);

}

static inline u64 get_canonical(u64 la)

{

return ((int64_t)la << 16) >> 16;

}

static inline bool is_noncanonical_address(u64 la)

{

#ifdef CONFIG_X86_64

return get_canonical(la) != la;

#else

return false;

#endif

}

#define TSS_IOPB_BASE_OFFSET 0x66

#define TSS_BASE_SIZE 0x68

#define TSS_IOPB_SIZE (65536 / 8)

#define TSS_REDIRECTION_SIZE (256 / 8)

#define RMODE_TSS_SIZE                                     \

(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)

enum {

TASK_SWITCH_CALL = 0,

TASK_SWITCH_IRET = 1,

TASK_SWITCH_JMP = 2,

TASK_SWITCH_GATE = 3,

};

#define HF_GIF_MASK         (1 << 0)

#define HF_HIF_MASK         (1 << 1)

#define HF_VINTR_MASK           (1 << 2)

#define HF_NMI_MASK        (1 << 3)

#define HF_IRET_MASK       (1 << 4)

#define HF_GUEST_MASK          (1 << 5) /* VCPU is in guest-mode */

/*

* Hardware virtualization extension instructions may fault if a

* reboot turns off virtualization while processes are running.

* Trap the fault and ignore the instruction if that happens.

*/

asmlinkage void kvm_spurious_fault(void);

#define ____kvm_handle_fault_on_reboot(insn, cleanup_insn) \

"666: " insn "\n\t" \

"668: \n\t"                           \

".pushsection .fixup, \"ax\" \n" \

"667: \n\t" \

cleanup_insn "\n\t"              \

"cmpb $0, kvm_rebooting \n\t"        \

"jne 668b \n\t"                       \

__ASM_SIZE(push) " $666b \n\t"       \

"call kvm_spurious_fault \n\t"           \

".popsection \n\t" \

_ASM_EXTABLE(666b, 667b)

#define __kvm_handle_fault_on_reboot(insn)      \

____kvm_handle_fault_on_reboot(insn, "")

#define KVM_ARCH_WANT_MMU_NOTIFIER

int kvm_unmap_hva(struct kvm *kvm, unsigned long hva);

int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end);

int kvm_age_hva(struct kvm *kvm, unsigned long hva);

int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);

void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);

int cpuid_maxphyaddr(struct kvm_vcpu *vcpu);

int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);

int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);

int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);

int kvm_cpu_get_interrupt(struct kvm_vcpu *v);

void kvm_vcpu_reset(struct kvm_vcpu *vcpu);

void kvm_define_shared_msr(unsigned index, u32 msr);

int kvm_set_shared_msr(unsigned index, u64 val, u64 mask);

bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);

void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,

struct kvm_async_pf *work);

void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,

struct kvm_async_pf *work);

void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,

struct kvm_async_pf *work);

bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu);

extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);

void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);

int kvm_is_in_guest(void);

void kvm_pmu_init(struct kvm_vcpu *vcpu);

void kvm_pmu_destroy(struct kvm_vcpu *vcpu);

void kvm_pmu_reset(struct kvm_vcpu *vcpu);

void kvm_pmu_cpuid_update(struct kvm_vcpu *vcpu);

bool kvm_pmu_msr(struct kvm_vcpu *vcpu, u32 msr);

int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *data);

int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info);

int kvm_pmu_check_pmc(struct kvm_vcpu *vcpu, unsigned pmc);

int kvm_pmu_read_pmc(struct kvm_vcpu *vcpu, unsigned pmc, u64 *data);

void kvm_handle_pmu_event(struct kvm_vcpu *vcpu);

void kvm_deliver_pmi(struct kvm_vcpu *vcpu);

#endif /* _ASM_X86_KVM_HOST_H */

时间: 2024-09-28 20:15:09

KVM源代码解读:linux-3.17.4\arch\x86\include\asm\kvm_host.h的相关文章

KVM源代码解读:linux-3.17.4\include\linux\kvm_host.h

#ifndef __KVM_HOST_H #define __KVM_HOST_H /* * This work is licensed under the terms of the GNU GPL, version 2.  See * the COPYING file in the top-level directory. */ #include <linux/types.h> #include <linux/hardirq.h> #include <linux/list.

KVM源代码解读:linux-3.17.4\include\uapi\linux\kvm.h

#ifndef __LINUX_KVM_H #define __LINUX_KVM_H /* * Userspace interface for /dev/kvm - kernel based virtual machine * * Note: you must update KVM_API_VERSION if you change this interface. */ #include <linux/types.h> #include <linux/compiler.h> #i

《linux 内核完全剖析》 include/asm/io.h

include/asm/io.h #define outb(value,port) __asm__ ("outb %%al,%%dx"::"a" (value),"d" (port)) //宏定义outb用汇编实现了在端口地址port处写入值value //使用的寄存器是al,一个byte长度,而端口port使用的是2byte长度地址来标记的寄存器,注意这里寄存器的使用 #define inb(port) ({ unsigned char _v;

《linux 内核全然剖析》 include/asm/io.h

include/asm/io.h #define outb(value,port) __asm__ ("outb %%al,%%dx"::"a" (value),"d" (port)) //宏定义outb用汇编实现了在端口地址port处写入值value //使用的寄存器是al,一个byte长度,而端口port使用的是2byte长度地址来标记的寄存器,注意这里寄存器的使用 #define inb(port) ({ unsigned char _v;

KVM源代码框架

自己通过看代码总结的内核中包含kvm的文件夹: (1)Linux-3.17.4\Documentation\virtual\kvm\ (2)Linux-3.17.4\include\ (3)Linux-3.17.4\drivers\s390\kvm\ (4)Linux-3.17.4\virt\kvm\ (5)Linux-3.17.4\arch\*\kvm\   (*号代表以下处理器体系架构:x86.tile.s390.powerpc.mips.ia64.arm64.arm)  先研究x86体系架

linux源码分析之位长定义 -- bitsperlong.h

我们知道,在Linux内核中,不同CPU里面,不同CPU的字节序定义不同. 本节年内容主要是讲的是:不同CPU里面,各自的位长定义也是不同. 本次用于分析的 Linux 内核版本为: linux--3.0.0-12. arch/XXX/include/asm/bitsperlong.h:不同CPU(XXX)的位长定义 1)ARM(XXX=arm): #include <asm-generic/bitsperlong.h> (2)PowerPC(XXX=powerpc) #ifndef __AS

Linux系统中errno对应的中文意思 errno.h

/usr/include/asm/errno.h #define EPERM 1 /* Operation not permitted */操作不允许 #define ENOENT 2 /* No such file or directory */文件/路径不存在 #define ESRCH 3 /* No such process */进程不存在 #define EINTR 4 /* Interrupted system call */中断的系统调用 #define EIO 5 /* I/O

linux内核奇遇记之md源代码解读之十五bitmap原理

转载请注明出处:http://blog.csdn.net/liumangxiong 为人不识陈近南,走遍江湖也枉然.做raid不识bitmap,通通都是走过场. 那么bitmap究竟是何许人物,能够在raid5的场子里混得风生水起呢?话说最早raid5是没有bitmap这位门客的,突然有一天跑raid5的系统异常掉电了,客户发现异常掉电之后再写数据就出现了数据不一致的情况.查来查去发现raid5本身设计就有一个缺陷:raid5每次写至少要写两个磁盘,写过程中异常掉电的时候就会发现一个磁盘写完成而

linux内核奇遇记之md源代码解读之十四raid5非条块内读

转载请注明出处:http://blog.csdn.net/liumangxiong 如果是非条块内读,那么就至少涉及到两个条块的读,这就需要分别从这两个条块内读出数据,然后再凑成整个结果返回给上层.接下来我们将看到如何将一个完整的bio读请求拆分成多个子请求下发到磁盘,从磁盘返回之后再重新组合成请求结果返回给上层的. 4097 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1); 4098 last_sector =