并查集详解---(转)

并查集是我暑假从高手那里学到的一招,觉得真是太精妙的设计了。以前我无法解决的一类问题竟然可以用如此简单高效的方法搞定。不分享出来真是对不起party了。(party:我靠,关我嘛事啊?我跟你很熟么?)

来看一个实例,杭电1232畅通工程


先在地图上给你若干个城镇,这些城镇都可以看作点,然后告诉你哪些对城镇之间是有道路直接相连的。最后要解决的是整幅图的连通性问题。比如随意给你两个
点,让你判断它们是否连通,或者问你整幅图一共有几个连通分支,也就是被分成了几个互相独立的块。像畅通工程这题,问还需要修几条路,实质就是求有几个连
通分支。如果是1个连通分支,说明整幅图上的点都连起来了,不用再修路了;如果是2个连通分支,则只要再修1条路,从两个分支中各选一个点,把它们连起
来,那么所有的点都是连起来的了;如果是3个连通分支,则只要再修两条路……

以下面这组数据输入数据来说明

4 2 1 3 4 3


一行告诉你,一共有4个点,2条路。下面两行告诉你,1、3之间有条路,4、3之间有条路。那么整幅图就被分成了1-3-4和2两部分。只要再加一条路,
把2和其他任意一个点连起来,畅通工程就实现了,那么这个这组数据的输出结果就是1。好了,现在编程实现这个功能吧,城镇有几百个,路有不知道多少条,而
且可能有回路。
这可如何是好?

我以前也不会呀,自从用了并查集之后,嗨,效果还真好!我们全家都用它!

并查集由一个整数型的数组和两个函数构成。数组pre[]记录了每个点的前导点是什么,函数find是查找,join是合并。

int pre[1000 ];

int find(int x)                                                  
                                                      //查找根节点

    int r=x;

    while ( pre[r ] != r )                                                                                             
//返回根节点 r

         
r=pre[r ];

    int i=x , j ;

    while( i != r )                                     
                                                                  //路径压缩

    {

         j
= pre[ i ];
// 在改变上级之前用临时变量  j
记录下他的值

         pre[
i ]= r ;
//把上级改为根节点

         i=j;

    }

    return r ;

}

void join(int x,int y)                                                                                                    //判断x
y是否连通,

                                                                                            
//如果已经连通,就不用管了 //如果不连通,就把它们所在的连通分支合并起,

{

    int fx=find(x),fy=find(y);

    if(fx!=fy)

        pre[fx ]=fy;

}


了解释并查集的原理,我将举一个更有爱的例子。
话说江湖上散落着各式各样的大侠,有上千个之多。他们没有什么正当职业,整天背着剑在外面走来走去,碰到和自己不是一路人的,就免不了要打一架。但大侠们
有一个优点就是讲义气,绝对不打自己的朋友。而且他们信奉“朋友的朋友就是我的朋友”,只要是能通过朋友关系串联起来的,不管拐了多少个弯,都认为是自己
人。这样一来,江湖上就形成了一个一个的群落,通过两两之间的朋友关系串联起来。而不在同一个群落的人,无论如何都无法通过朋友关系连起来,于是就可以放
心往死了打。但是两个原本互不相识的人,如何判断是否属于一个朋友圈呢?

我们可以在每个朋友圈内推举出一个比较有名望的人,作为该圈子的代表人物,这样,每个圈子就可以这样命名“齐达内朋友之队”“罗纳尔多朋友之队”……两人只要互相对一下自己的队长是不是同一个人,就可以确定敌友关系了。


是还有问题啊,大侠们只知道自己直接的朋友是谁,很多人压根就不认识队长,要判断自己的队长是谁,只能漫无目的的通过朋友的朋友关系问下去:“你是不是队
长?你是不是队长?”这样一来,队长面子上挂不住了,而且效率太低,还有可能陷入无限循环中。于是队长下令,重新组队。队内所有人实行分等级制度,形成树
状结构,我队长就是根节点,下面分别是二级队员、三级队员。每个人只要记住自己的上级是谁就行了。遇到判断敌友的时候,只要一层层向上问,直到最高层,就
可以在短时间内确定队长是谁了。由于我们关心的只是两个人之间是否连通,至于他们是如何连通的,以及每个圈子内部的结构是怎样的,甚至队长是谁,并不重
要。所以我们可以放任队长随意重新组队,只要不搞错敌友关系就好了。于是,门派产生了。

http://i3.6.cn/cvbnm/6f/ec/f4/1e9cfcd3def64d26ed1a49d72c1f6db9.jpg


面我们来看并查集的实现。 int pre[1000];

这个数组,记录了每个大侠的上级是谁。大侠们从1或者0开始编号(依据题意而定),pre[15]=3就表示15号大侠的上级是3号大侠。如果一个人的上
级就是他自己,那说明他就是掌门人了,查找到此为止。也有孤家寡人自成一派的,比如欧阳锋,那么他的上级就是他自己。每个人都只认自己的上级。比如胡青牛
同学只知道自己的上级是杨左使。张无忌是谁?不认识!要想知道自己的掌门是谁,只能一级级查上去。
find这个函数就是找掌门用的,意义再清楚不过了(路径压缩算法先不论,后面再说)。

int find(int
x)                                                                  //查找我(x)的掌门

{

    int r=x;                                                                      
//委托 r 去找掌门

    while (pre[r
]!=r)                                                        //如果r的上级不是r自己(也就是说找到的大侠他不是掌门 = =)

    r=pre[r
] ;                                                                   // r 就接着找他的上级,直到找到掌门为止。

    return  r
;                                                                   //掌门驾到~~~

}


来看看join函数,就是在两个点之间连一条线,这样一来,原先它们所在的两个板块的所有点就都可以互通了。这在图上很好办,画条线就行了。但我们现在是
用并查集来描述武林中的状况的,一共只有一个pre[]数组,该如何实现呢?

还是举江湖的例子,假设现在武林中的形势如图所示。虚竹小和尚与周芷若MM是我非常喜欢的两个人物,他们的终极boss分别是玄慈方丈和灭绝师太,那明显
就是两个阵营了。我不希望他们互相打架,就对他俩说:“你们两位拉拉勾,做好朋友吧。”他们看在我的面子上,同意了。这一同意可非同小可,整个少林和峨眉
派的人就不能打架了。这么重大的变化,可如何实现呀,要改动多少地方?其实非常简单,我对玄慈方丈说:“大师,麻烦你把你的上级改为灭绝师太吧。这样一
来,两派原先的所有人员的终极boss都是师太,那还打个球啊!反正我们关心的只是连通性,门派内部的结构不要紧的。”玄慈一听肯定火大了:“我靠,凭什
么是我变成她手下呀,怎么不反过来?我抗议!”抗议无效,上天安排的,最大。反正谁加入谁效果是一样的,我就随手指定了一个。这段函数的意思很明白了吧?

void join(int
x,int y)                                                                   //我想让虚竹和周芷若做朋友

{

    int fx=find(x),fy=find(y);                                                     
 //虚竹的老大是玄慈,芷若MM的老大是灭绝

    if(fx!=fy)                                                                               //玄慈和灭绝显然不是同一个人

    pre[fx ]=fy;                                                                          
//方丈只好委委屈屈地当了师太的手下啦

}


来看看路径压缩算法。建立门派的过程是用join函数两个人两个人地连接起来的,谁当谁的手下完全随机。最后的树状结构会变成什么胎唇样,我也完全无法预
计,一字长蛇阵也有可能。这样查找的效率就会比较低下。最理想的情况就是所有人的直接上级都是掌门,一共就两级结构,只要找一次就找到掌门了。哪怕不能完
全做到,也最好尽量接近。这样就产生了路径压缩算法。
设想这样一个场景:两个互不相识的大侠碰面了,想知道能不能揍。 于是赶紧打电话问自己的上级:“你是不是掌门?”
上级说:“我不是呀,我的上级是谁谁谁,你问问他看看。” 一路问下去,原来两人的最终boss都是东厂曹公公。
“哎呀呀,原来是记己人,西礼西礼,在下三营六组白面葫芦娃!” “幸会幸会,在下九营十八组仙子狗尾巴花!” 两人高高兴兴地手拉手喝酒去了。
“等等等等,两位同学请留步,还有事情没完成呢!”我叫住他俩。 “哦,对了,还要做路径压缩。”两人醒悟。
白面葫芦娃打电话给他的上级六组长:“组长啊,我查过了,其习偶们的掌门是曹公公。不如偶们一起及接拜在曹公公手下吧,省得级别太低,以后查找掌门麻
环。”
“唔,有道理。” 白面葫芦娃接着打电话给刚才拜访过的三营长……仙子狗尾巴花也做了同样的事情。
这样,查询中所有涉及到的人物都聚集在曹公公的直接领导下。每次查询都做了优化处理,所以整个门派树的层数都会维持在比较低的水平上。路径压缩的代码,看
得懂很好,看不懂也没关系,直接抄上用就行了。总之它所实现的功能就是这么个意思。

http://i3.6.cn/cvbnm/60/98/92/745b3eac68181e4ee1fa8d1b8bca38bc.jpg

hdu1232

[cpp] view plaincopy

  1. #include<iostream>
  2. using namespace std;
  3. int  pre[1050];
  4. bool t[1050];               //t 用于标记独立块的根结点
  5. int Find(int x)
  6. {
  7. int r=x;
  8. while(r!=pre[r])
  9. r=pre[r];
  10. int i=x,j;
  11. while(pre[i]!=r)
  12. {
  13. j=pre[i];
  14. pre[i]=r;
  15. i=j;
  16. }
  17. return r;
  18. }
  19. void mix(int x,int y)
  20. {
  21. int fx=Find(x),fy=Find(y);
  22. if(fx!=fy)
  23. {
  24. pre[fy]=fx;
  25. }
  26. }
  27. int main()
  28. {
  29. int N,M,a,b,i,j,ans;
  30. while(scanf("%d%d",&N,&M)&&N)
  31. {
  32. for(i=1;i<=N;i++)          //初始化
  33. pre[i]=i;
  34. for(i=1;i<=M;i++)          //吸收并整理数据
  35. {
  36. scanf("%d%d",&a,&b);
  37. mix(a,b);
  38. }
  39. memset(t,0,sizeof(t));
  40. for(i=1;i<=N;i++)          //标记根结点
  41. {
  42. t[Find(i)]=1;
  43. }
  44. for(ans=0,i=1;i<=N;i++)
  45. if(t[i])
  46. ans++;
  47. printf("%d\n",ans-1);
  48. }
  49. return 0;
  50. }//dellaserss

以下为原文附的代码:

回到开头提出的问题,我的代码如下:

#include int pre[1000 ];

int find(int x)

{

int r=x;

while
(pre[r ]!=r)

r=pre[r
];

int
i=x; int j;

while(i!=r)

{

j=pre[i
];

pre[i
]=r;

i=j;

}

return
r;

}

int main()

{

int
n,m,p1,p2,i,total,f1,f2;

while(scanf("%d",&n)
&& n)         //读入n,如果n为0,结束

{                                                    //刚开始的时候,有n个城镇,一条路都没有
//那么要修n-1条路才能把它们连起来

total=n-1;

//每个点互相独立,自成一个集合,从1编号到n
//所以每个点的上级都是自己

for(i=1;i<=n;i++)
{ pre[i ]=i; }                //共有m条路

scanf("%d",&m);
while(m--)

{
//下面这段代码,其实就是join函数,只是稍作改动以适应题目要求

//每读入一条路,看它的端点p1,p2是否已经在一个连通分支里了

scanf("%d
%d",&p1,&p2);

f1=find(p1);

f2=find(p2);

//如果是不连通的,那么把这两个分支连起来

//分支的总数就减少了1,还需建的路也就减了1

if(f1!=f2)

{

pre[f2
]=f1;

total--;

}

//如果两点已经连通了,那么这条路只是在图上增加了一个环
//对连通性没有任何影响,无视掉

}

//最后输出还要修的路条数

printf("%d\n",total);

}

return
0;

}

时间: 2024-11-07 18:42:24

并查集详解---(转)的相关文章

并查集详解(转)

并查集是我暑假从高手那里学到的一招,觉得真是太精妙的设计了.以前我无法解决的一类问题竟然可以用如此简单高效的方法搞定.不分享出来真是对不起party了.(party:我靠,关我嘛事啊?我跟你很熟么?) 来看一个实例,杭电1232畅通工程 首先在地图上给你若干个城镇,这些城镇都可以看作点,然后告诉你哪些对城镇之间是有道路直接相连的.最后要解决的是整幅图的连通性问题.比如随意给你两个点,让你判断它们是否连通,或者问你整幅图一共有几个连通分支,也就是被分成了几个互相独立的块.像畅通工程这题,问还需要修

并查集详解(转自一个很有才的大神)膜拜

并查集是我暑假从高手那里学到的一招,觉得真是太精妙的设计了.以前我无法解决的一类问题竟然可以用如此简单高效的方法搞定.不分享出来真是对不起party了.(party:我靠,关我嘛事啊?我跟你很熟么?) 来看一个实例,杭电1232畅通工程 首先在地图上给你若干个城镇,这些城镇都可以看作点,然后告诉你哪些对城镇之间是有道路直接相连的.最后要解决的是整幅图的连通性问题.比如随意给你两个点,让你判断它们是否连通,或者问你整幅图一共有几个连通分支,也就是被分成了几个互相独立的块.像畅通工程这题,问还需要修

并查集详解 (转)

http://blog.csdn.net/dellaserss/article/details/7724401 我从CSDN转的文章,原文作者我也不懂是谁,文章写得真的是诙谐幽默,使得内容更容易理解了. 来看一个实例,杭电OJ 1232畅通工程 Problem Description 某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇.省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可).问最少还需要建

【转】并查集详解

来看一个实例,杭电1232畅通工程 首先在地图上给你若干个城镇,这些城镇都可以看作点,然后告诉你哪些对城镇之间是有道路直接相连的.最后要解决的是整幅图的连通性问题.比如随意给你两个点,让你判断它们是否连通,或者问你整幅图一共有几个连通分支,也就是被分成了几个互相独立的块.像畅通工程这题,问还需要修几条路,实质就是求有几个连通分支.如果是1个连通分支,说明整幅图上的点都连起来了,不用再修路了:如果是2个连通分支,则只要再修1条路,从两个分支中各选一个点,把它们连起来,那么所有的点都是连起来的了:如

读书笔记 之 数据结构(并查集详解)(POJ1703)

<ACM/ICPC算法训练教程>读书笔记-这一次补上并查集的部分.将对并查集的思想进行详细阐述,并附上本人AC掉POJ1703的Code. 在一些有N个元素的集合应用问题中,通常会将每个元素构成单元素集合,然后按照一定顺序将同属一组的集合合并,期间要反复查找每一个元素在哪个集合中.这类问题往往看似简单,但是数据量很大,因此容易造成TLE或MLE,也就是空间度和时间度极其复杂.因此在这里,我们引入一种抽象的特殊数据结构——并查集. 并查集:类似一个族谱,每个结点均有一个father[x]来表示x

[转]并查集详解

来看一个实例,杭电1232畅通工程 首 先在地图上给你若干个城镇,这些城镇都可以看作点,然后告诉你哪些对城镇之间是有道路直接相连的.最后要解决的是整幅图的连通性问题.比如随意给你两个 点,让你判断它们是否连通,或者问你整幅图一共有几个连通分支,也就是被分成了几个互相独立的块.像畅通工程这题,问还需要修几条路,实质就是求有几个连 通分支.如果是1个连通分支,说明整幅图上的点都连起来了,不用再修路了:如果是2个连通分支,则只要再修1条路,从两个分支中各选一个点,把它们连起 来,那么所有的点都是连起来

并查集详解及模板

概念: p { margin-bottom: 0.25cm; direction: ltr; color: #000000; line-height: 120%; text-align: justify; orphans: 0; widows: 0 } p.western { font-family: "Calibri", "Lucida Sans Unicode", sans-serif; font-size: 10pt } p.cjk { font-family

并查集详解

使用并查集查找时,如果查找次数很多,那么使用朴素版的查找方式肯定要超时.比如,有一百万个元素,每次都从第一百万个开始找,这样一次运算就是10^6,如果程序要求查找个一千万次,这样下来就是10^13,肯定要出问题的. 这是朴素查找的代码,适合数据量不大的 int findx(int x) { int r=x; while(parent[r] !=r) r=parent[r]; return r; } 下面是采用路径压缩的方法查找元素: int find(int x) //查找x元素所在的集合,回溯

mysql---字符集详解

常用的字符集包括ASCII ,GB2312 , GBK , UTF-8 ,Unicode 首先要知道 ASCII编码: 用一个字节来标识0-9的数字.大小写字母.及一些标点和不可见字符.1个字节8位,可以有256种组合.标准的ASCII编码只利用一个字节的后7位(128种组合),最高位用作奇偶校验. 范围为0000 0000 - 0111 1111 即 0-127 因为ASCII最多只有256种组合,中国汉字成千上万,所以需要更多的字节来表示一个汉字,常见中文编码的有GB2312和GBK. GB