Building Block
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768
K (Java/Others)
Total Submission(s): 4548 Accepted Submission(s): 1408
Problem Description
John are playing with blocks. There are N blocks (1 <= N <= 30000) numbered 1...N。Initially, there are N piles, and each pile contains one block. Then John do some operations P times (1 <= P <= 1000000). There are two kinds of operation:
M X Y : Put the whole pile containing block X up to the pile containing Y. If X and Y are in the same pile, just ignore this command.
C X : Count the number of blocks under block X
You are request to find out the output for each C operation.
Input
The first line contains integer P. Then P lines follow, each of which contain an operation describe above.
Output
Output the count for each C operations in one line.
Sample Input
6 M 1 6 C 1 M 2 4 M 2 6 C 3 C 4
Sample Output
1 0 2
Source
2009 Multi-University Training Contest 1 - Host
by TJU
Recommend
gaojie | We have carefully selected several similar problems for you: 2819 2824 2821 2820 2822
有N个砖头,编号为1~N。有两种操作, 第一种是M x y, 把 x 所在的那一堆砖头全部移动放到 y 所在的那堆上面。 第二种操作是C x, 即查询 x 下面有多少个砖头。
带权并查集的应用, 用 Num[ x ] 来表示以 x 为根的这棵树的节点总数(x 必须是根,没有父亲节点), Under[ x ] 数组来表示 x 砖头下面有多少个砖头。
如果把a堆砖放到b堆砖上面, 那么a堆最底面那个砖头root_a的下面原本是有0个砖头的, 搬过去之后,变成了有 b 堆砖的数量个。然后root_a之上的数量便根据root_a的值进行更新。更新的步骤在查找时路径压缩的那一步进行。
#include <cstdio> #include <iostream> using namespace std; const int MAXN = 30000 + 10; int Fa[MAXN], Under[MAXN], Num[MAXN]; void Init() { for (int i = 0; i < MAXN; i++) { Fa[i] = i; //初始化并查集,自成一个连通分量 Num[i] = 1; //i是根节点,初始化以它为根的树共有1个节点 } } int Find(int x) { if (x == Fa[x]) return x; int fa = Fa[x]; Fa[x] = Find(Fa[x]); //递归查找老祖宗 Under[x] += Under[fa]; //加上父亲的 return Fa[x]; } void Union(int x, int y) { int tx = Find(x), ty = Find(y); //先查找两者的祖先 if (tx == ty) return; Fa[tx] = ty; //合并 Under[tx] = Num[ty]; //tx下面多了Num[ty]个 Num[ty] += Num[tx]; //以ty为根的树多了Num[tx]个节点 Num[tx] = 0; //以tx为根的树没有结点(此时tx已经不是一个树的真正根节点) } int main() { int t, x, y; char cmd[10]; Init(); scanf("%d", &t); while (t--) { scanf("%s", cmd); if (cmd[0] == 'C') { scanf("%d", &x); Find(x); printf("%d\n", Under[x]); } else { scanf("%d%d", &x, &y); Union(x, y); } } return 0; }