解方程(codevs 3732)

题目描述

已知多项式方程:

a0+a1x+a2x^2+..+anx^n=0

求这个方程在[1, m ] 内的整数解(n 和m 均为正整数)

输入输出格式

输入格式:

输入文件名为equation .in。

输入共n + 2 行。

第一行包含2 个整数n 、m ,每两个整数之间用一个空格隔开。

接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an

输出格式:

输出文件名为equation .out 。

第一行输出方程在[1, m ] 内的整数解的个数。

接下来每行一个整数,按照从小到大的顺序依次输出方程在[1, m ] 内的一个整数解。

输入输出样例

输入样例#1:

2 10 
1
-2
1

输出样例#1:

1
1

输入样例#2:

2 10
2
-3
1

输出样例#2:

2
1
2

输入样例#3:

2 10 
 

输出样例#3:

0

说明

30%:0<n<=2,|ai|<=100,an!=0,m<100

50%:0<n<=100,|ai|<=10^100,an!=0,m<100

70%:0<n<=100,|ai|<=10^10000,an!=0,m<10000

100%:0<n<=100,|ai|<=10^10000,an!=0,m<1000000

分析:
  一看想是用高精度做,可能还会超时,就没仔细做,打的暴力枚举,50分
  正解:其实不是高精度……
      对于很大的数,我们可以给它取模,因为等式两边取模仍然成立。但是枚举x来判断的话会超时,所以这里用到一个技巧:如果一个数x对于这个等式成立的话,那么x+mod(模的那个数)也会成立。
      需要注意的是,只用一个数模可能会不对,所以多用几个检验一下。

代码:
#include<cstdio>
#include<iostream>
#include<cstring>
#define M 110
#define N 1000010
#define ll long long
using namespace std;
char s[N];
int n,m;
ll a[3][M],p[3]={0,10007,1000001397};
bool ok[N];
bool check(int x,int num)
{
    ll ans=0,w=1;
    for(int i=0;i<=n;i++)
    {
        ans=(ans+a[num][i]*w%p[num])%p[num];
        w=(w*x)%p[num];
    }
    if(!(ans%p[num]))return true;
    return false;
}
int main()
{
    freopen("jh.in","r",stdin);
    scanf("%d%d",&n,&m);
    for(int i=0;i<=n;i++)
    {
        scanf("%s",s);int l=strlen(s);
        bool flag=false;
        for(int j=1;j<=2;j++)
        {
            int x=0;
            if(s[0]==‘-‘){flag=true;x=1;}
            for(int k=x;k<l;k++)
              a[j][i]=(a[j][i]*10%p[j]+(ll)s[k]-‘0‘)%p[j];
            if(flag)a[j][i]=p[j]-a[j][i];
        }
    }
    for(int i=1;i<=p[1];i++)
      if(check(i,1))
      {
          for(int j=i;j<=m;j+=p[1])
            if(check(j,2))
              ok[j]=true;
      }
    int tot=0;
    for(int i=1;i<=m;i++)
      if(ok[i])tot++;
    printf("%d\n",tot);
    for(int i=1;i<=m;i++)
      if(ok[i])printf("%d\n",i);
    return 0;
}

时间: 2024-10-29 19:08:52

解方程(codevs 3732)的相关文章

用python解方程和微积分

用python解方程: from sympy import * x = Symbol('x')  y = Symbol('y') print solve([2* x - y -3,3* x + y -7],[x, y]) 2. 求极限: 代码中的oo就代表无穷. from sympy import * n = Symbol('n') s = ((n+3)/(n+2))**n print limit(s, n, oo) 3. 求定积分: integrate函数用于积分问题. from sympy 

NOIP201410解方程(C++)

NOIP201410解方程 难度级别:A: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 试题描述 已知多项式方程: a0+a1*x+a2*x^2+a3*x^3+-+an*x^n=0 求这个方程在[1, m]内的整数解(n 和 m 均为正整数). 输入 输入共 n+2 行.第一行包含 2 个整数 n.m,每两个整数之间用一个空格隔开.接下来的 n+1 行每行包含一个整数,依次为a0,a1,a2-an.  输出 第一行输出方程在[1, m]内的整数解

codevs3732==洛谷 解方程P2312 解方程

P2312 解方程 195通过 1.6K提交 题目提供者该用户不存在 标签数论(数学相关)高精2014NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录 题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .in. 输入共n + 2 行. 第一行包含2 个整数n .m ,每两个整数之间用一个空格隔开. 接下来的n+1 行每行包含一个整数,依次

HDU 4793 Collision --解方程

题意: 给一个圆盘,圆心为(0,0),半径为Rm, 然后给一个圆形区域,圆心同此圆盘,半径为R(R>Rm),一枚硬币(圆形),圆心为(x,y),半径为r,一定在圆形区域外面,速度向量为(vx,vy),硬币向圆盘撞过去,碰到圆盘后会以相反方向相同速度回来(好像有点违背物理规律啊,但是题目是这样,没办法).问硬币某一部分在圆形区域内的总时间. 解法: 解方程,求 (x+vx*t,y+vy*t) 代入圆形区域方程是否有解,如果没解,说明硬币运动轨迹与圆形区域都不相交,答案为0 如果有解,再看代入圆盘有

【NOIP之旅】NOIP2014 day2 T3 解方程

3.解方程 (equation.cpp/c/pas) [问题描述] 已知多项式方程: 求这个方程在[1, m]内的整数解(n和m均为正整数).   [输入] 输入文件名为equation.in. 输入共n+2行. 第一行包含2个整数n.m,每两个整数之间用一个空格隔开. 接下来的n+1行每行包含一个整数,依次为a0,a1,a2,……,an. [输出] 输出文件名为equation.out. 第一行输出方程在[1, m]内的整数解的个数. 接下来每行一个整数,按照从小到大的顺序依次输出方程在[1,

1743: 解方程

1743: 解方程 Description 一群奥特曼打败了一群小怪兽,已知所有的奥特曼均有x1个头.y1条腿(变异奥特曼),所有的小怪兽均有x2个头.y2条腿.战场上一共有q个头,w条腿,问有多少奥特曼,有多少个小怪兽? Input 输入数据有多组每组包含6个正整数,分别为,x1,y1,x2,y2,q,w :(0<=q,w<=1000000000):输入数据保证有唯一解.读到0 0 0 0 0 0结束. Output 输出占一行,包含两个正整数,分别为:奥特曼和小怪兽的数目: Sample

解方程与高斯消元

解决多元一次方程组: n个方程n个未知数高斯消元法:思路:1.把方程未知数的系数写成一个矩阵2.消去x1,用除第一行以外的其他行减去第一行,写在原位上3.同理第二步,消去第三行的x24.原来的矩阵会变成一个上三角矩阵5.最后直接解方程*如果当前方程需要消元的位置系数是0,就把当前方程和下面第一个非0的方程换一下位置反正也不影响答案 代码实现: void gauss() { juzhen:m for(int i=1;i<=n;++i) { if(m[i][i]==0) { for(int j=i+

1402 解方程

1402 解方程 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 你曾因解麻烦的二元一次方程而烦恼吗?(其实很简单)我们现在用程序来模拟一下吧. 输入描述 Input Description 输入有两行,分别是两个一次方程,保证输入满足二元一次方程的定义:会出现小数,有效数字不会超过5位:保证有且只有一个解.未知数不一定是x和y.输出保留到小数点后10位.数据不超过maxlongint.不会出现括号.除

【BZOJ 3751】 [NOIP2014]解方程

3751: [NOIP2014]解方程 Time Limit: 10 Sec  Memory Limit: 128 MB Submit: 914  Solved: 173 [Submit][Status][Discuss] Description 已知多项式方程: a0+a1*x+a2*x^2+...+an*x^n=0 求这个方程在[1,m]内的整数解(n和m均为正整数). Input 第一行包含2个整数n.m,每两个整数之间用一个空格隔开. 接下来的n+1行每行包含一个整数,依次为a0,a1,

【uva10341】二分法解方程,注意单调性

百度下半年严惩低质量站点,站长的噩耗即将到来 当您点击阅读这篇文章后,我相信您是冲着这个标题而来,在这里我想告诉您的是:"这个标题有一个特殊的地方,就是出现了百度下半年严惩低质量站点和站长的噩耗就要到来";而这个标题大概的意思是说:"百度6月份以后就会严惩质量比较低的站点,且各个行业的网站只要存在质量低的网页都会被K站和降权,以致站长们的噩耗就要来到."所以,本篇文章仅送给那些网站质量较低的.权重不高的.排名较差的和心虚的站长们,其中包括人才.教育.房产.游戏.汽车