组合数取模Lucas定理及快速幂取模

  组合数取模就是求的值,根据的取值范围不同,采取的方法也不一样。

下面,我们来看常见的两种取值情况(m、n在64位整数型范围内)

(1)  ,

此时较简单,在O(n2)可承受的情况下组合数的计算可以直接用杨辉三角递推,边做加法边取模。

(2) ,   ,并且是素数

 本文针对该取值范围较大又不太大的情况(2)进行讨论。

这个问题可以使用Lucas定理,定理描述:

      

 其中

这样将组合数的求解分解为小问题的乘积,下面考虑计算C(ni, mi) %p.

 已知C(n, m) mod p = n!/(m!(n - m)!) mod p。当我们要求(a/b)mod p的值,且a很大,无法直接求得a/b的值时,我们可以转而使用乘法逆元k,将a乘上k再模p,即(a*k) mod p。 其结果与(a/b) mod p等价。

那么逆元是什么?

定义:满足a*k≡1 (mod p)的k值就是a关于p的乘法逆元(当p是1时,对于任意a,k都为1)

除法取模,这里要用到m!(n-m)!的逆元。

根据费马小定理

已知gcd(a, p) = 1,则 ap-1 ≡ 1 (mod p),  所以 a*ap-2 ≡ 1 (mod p)。

也就是 (m!(n-m)!)的逆元为 (m!(n-m)!)p-2 ;

下面附上Lucas定理的一种证明,见下图,参考冯志刚《初等数论》第37页。

题意:,其中,并且是素数。

代码:

#include<iostream>
//#include<algorithm>
using namespace std;
typedef long long ll;
int quick_power_mod(int a,int b,int m){//pow(a,b)%m
    int result = 1;
    int base = a;
    while(b>0){
         if(b & 1==1){
            result = (result*base) % m;
         }
         base = (base*base) %m;
         b>>=1;
    }
    return result;
}
//计算组合数取模
ll comp(ll a, ll b, int p) {//composite num C(a,b)%p
    if(a < b)   return 0;
    if(a == b)  return 1;
    if(b > a - b)   b = a - b;

    int ans = 1, ca = 1, cb = 1;
    for(ll i = 0; i < b; ++i) {
        ca = (ca * (a - i))%p;
        cb = (cb * (b - i))%p;
    }
    ans = (ca*quick_power_mod(cb, p - 2, p)) % p;
    return ans;
}
ll lucas(ll n, ll m, ll p) {
     ll ans = 1;

     while(n&&m&&ans) {
        ans = (ans*comp(n%p, m%p, p)) % p;//also can be recusive
        n /= p;
        m /= p;
     }
     return ans;
}
int main(){
    ll m,n;
    while(cin>>n>>m){
        cout<<lucas(n,m,10007)<<endl;
    }
    return 0;
}

上面的代码中用到了求幂取模操作来计算(m!(n-m)!)p-2 % p.下面解释幂取模算法:

反复平方法 求ab%m

通过研究指数b的二进制表示发现,对任意的整数b都可表示为:

  • n表示b的实际二进制位数
  • bi表示该位是0或1

因此,ab可表示为:

即用b的每一位表示a的每一项,而对任意相邻的两项存在平方关系,即:

因此我们构造下面的算法:

    • 把b转换为二进制表示,并从右至左扫描其每一位(从低到高)
    • 当扫描到第i位时,根据同余性质(2)计算a的第i项的模:

      base变量表示第i-1位时计算出的模,通过递归能很容易地确定所有位的模。
    • 如果第i位为1,即bi=1,则表示该位需要参与模运算,计算结果 result = (result*base) mod m;其中result为前i-1次的计算结果;若bi=0,则表示a的第i项为1,不必参与模运算
int quick_power_mod(int a,int b,int m){
    int result = 1;
    int base = a;
    while(b>0){
         if(b & 1==1){
            result = (result*base) % m;
         }
         base = (base*base) %m;
         b >>=1;
    }
    return result;
}

其中运用了两个同余性质:

同余性质1:ab≡bc (mod m)

同余性质2:  a≡c (mod m) => a2≡c2 (mod m)

理解要点:

  • base记录了a的每项的模,无论b在该位是0还是1,该结果都记录,目的是给后续位为1的项使用,计算方式是前一结果的平方取模,这也是反复平方法的由来
  • result只记录了位为1的项的模结果,该计算方式使用了同余性质1
  • 通过地把a使用二进制表示,并结合同余性质1,2,巧妙地化解了大数取模的运算。对1024位这样的大数,也最多进行1024次循环便可计算模值,性能非常快。

该方法是许多西方数学家努力的结果,通常也称为Montgomery算法。

(以上部分内容由网络搜集整理而来,不当之处,烦请不吝赐教)

时间: 2024-10-06 03:11:55

组合数取模Lucas定理及快速幂取模的相关文章

poj 1845 Sumdiv (同余定理,快速幂取余)

链接:poj 1845 题意:求A^B的所有因子的和对9901取余后的值 如:2^3=8,8的因子有 1,2,4,8,所有和为15,取余后也是15 应用定理主要有三个: (1)整数的唯一分解定理: 任意正整数都有且只有一种方式写出其素因子的乘积表达式. A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn)   其中pi均为素数 (2)约数和公式: 对于已经分解的整数A=(p1^k1)*(p2^k2)*(p3^k3)*....*(pn^kn) 有A的所有因子之和为 S = 

快速幂取模和快乘取模

一.快速幂取模概念 快速幂取模,顾名思义,就是快速的求一个幂式的模(余),比如a^b%c,快速的计算出这个式子的值. 在程序设计过程中,经常要去求一些大数对于某个数的余数,为了得到更快.计算范围更大的算法,产生了快速幂取模算法. 二.快速幂取模算法实现 1)很容易能想到,循环b次,每次乘a,最后对c取余就可以了. int ans = 1; for(int i = 1; i<=b; i++) { ans = ans * a; } ans = ans % c; 这个朴素算法的问题是: 1.如果a和b

快速幂及快速幂取模

快速幂顾名思义,就是快速算某个数的多少次幂.其时间复杂度为 O(log?N), 与朴素的O(N)相比效率有了极大的提高.——bybaidu 快速幂可以用位运算这个强大的工具实现. 代码: 1 int pow(int a,int b) 2 { 3 int ans=1; 4 while(b!=0) 5 { 6 if(b&1) 7 ans*=a; 8 a*=a; 9 b>>=1; 10 } 11 return ans; 12 } 快速幂取模需要记住一个定理:积的取模等于取模积的取模:算法是蒙

HDU 5363 元素为1~n的集合有多少个子集的元素和为偶数-思维-(快速幂取模)

题意:一个集合有元素1~n,求他的子集满足这样的条件:子集的所有元素的和是偶数,问有多少个这样的子集 分析: 一个排列组合问题.元素和为偶数,那么奇数肯定要调偶数个,偶数就无所谓了,所以偶数有2^(n/2)种选法,再乘以奇数有(C((n+1)/2,0)+C((n+1)/2,2).....)种选法,再减一,除去空集,注意,上面取奇数的时候用的是(n+1)/2(这里是向下取整的除法),是综合n为偶数和n为奇数两种情况. 组合数性质:C(n,1)+C(n,3)+....=C(n,2)+C(n,4)+.

HDU 5363 Key Set【快速幂取模】

Key Set Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total Submission(s): 1886    Accepted Submission(s): 990 Problem Description soda has a set S with n integers {1,2,-,n}. A set is called key set if the sum

Uva 11609 - Team ( 组合数学 + 二项式性质 + 快速幂取模 )

Uva 11609 - Team ( 组合数学 + 二项式性质 + 快速幂取模 ) 题意: 有N个人,选一个或多个人参加比赛,其中一名当队长,有多少种方案? (如果参赛者完全相同但是队长不同,也算是一种情况) [ 1<=n <= 10^9 ] 分析: 这题要用到组合式公式的性质 转化之后快速幂取模轻松搞定之 代码: //Uva 11609 - Team /* 组合数公式 + 二项式系数性质 + 快速幂 手动自己推 -> F[n] = C(n,1)*1 + C(n,2)*2 + C(n,n

POJ 1845-Sumdiv(快速幂取模+整数唯一分解定理+约数和公式+同余模公式)

Sumdiv Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 1845 Appoint description:  System Crawler  (2015-05-27) Description Consider two natural numbers A and B. Let S be the sum of all natural d

HDU 4945 2048(dp+快速幂取模)

题目大意:给你一个序列让你求出有多少种组合可以得到2048.结果要对998244353取余. 解题思路:求出不能满足条件的方案数,然后用总的减去不满足的然后乘上其他无关的组合方式,比如3,5这些数字是在构成2048的过程中无用的,所以乘上这些组合出来的情况. dp[i][j]表示取到第i个2^i的数,其最大的和在j*2^i至(j+1)*2^i-1的方案数. 所以有dp[i][j] += ((dp[i-1][k]+dp[i-1][k+1])*use[i][j-k/2])%mod.表示在i位置时最大

快速幂取模(POJ 1995)

http://poj.org/problem?id=1995 以这道题来分析一下快速幂取模 a^b%c(这就是著名的RSA公钥的加密方法),当a,b很大时,直接求解这个问题不太可能 利用公式a*b%c=((a%c)*b)%c 每一步都进行这种处理,这就解决了a^b可能太大存不下的问题,但这个算法的时间复杂度依然没有得到优化 由此可以用快速幂算法优化: http://www.cnblogs.com/qlky/p/5020402.html 再结合取模公式: (a + b) % p = (a % p