本文均属自己阅读源码的点滴总结,转账请注明出处谢谢。
欢迎和大家交流。qq:1037701636 email:gzzaigcn2[email protected]
Software:系统源码Android5.1
前沿:
在全新的Camera API2架构下,常常会有人疑问再也看不到熟悉的SetParameter/Paramters等相关的身影,取而代之的是一种全新的CameraMetadata结构的出现,他不仅很早就出现在Camera API1/API2结构下的Camera2Device、Camera3Device中用于和HAL3的数据交互,而现在在API2的驱使下都取代了Parameter,实现了Java到native到hal3的参数传递。那么现在假如需要在APP中设置某一项控制参数,对于Camera API2而言,涉及到对Sensor相关参数的set/control时又需要做哪些工作呢?
1. camera_metadata类整体布局结构
主要涉及到的源文件包括camera_metadata_tags.h,camera_metadata_tag_info.c,CameraMetadata.cpp,camera_metadata.c。对于每个Metadata数据,其通过不同业务控制需求,将整个camera工作需要的参数划分成多个不同的Section,其中在camera_metadata_tag_info.c表定义了所有Camera需要使用到的Section段的Name:
const char *camera_metadata_section_names[ANDROID_SECTION_COUNT] = { [ANDROID_COLOR_CORRECTION] = "android.colorCorrection", [ANDROID_CONTROL] = "android.control", [ANDROID_DEMOSAIC] = "android.demosaic", [ANDROID_EDGE] = "android.edge", [ANDROID_FLASH] = "android.flash", [ANDROID_FLASH_INFO] = "android.flash.info", [ANDROID_GEOMETRIC] = "android.geometric", [ANDROID_HOT_PIXEL] = "android.hotPixel", [ANDROID_HOT_PIXEL_INFO] = "android.hotPixel.info", [ANDROID_JPEG] = "android.jpeg", [ANDROID_LENS] = "android.lens", [ANDROID_LENS_INFO] = "android.lens.info", [ANDROID_NOISE_REDUCTION] = "android.noiseReduction", [ANDROID_QUIRKS] = "android.quirks", [ANDROID_REQUEST] = "android.request", [ANDROID_SCALER] = "android.scaler", [ANDROID_SENSOR] = "android.sensor", [ANDROID_SENSOR_INFO] = "android.sensor.info", [ANDROID_SHADING] = "android.shading", [ANDROID_STATISTICS] = "android.statistics", [ANDROID_STATISTICS_INFO] = "android.statistics.info", [ANDROID_TONEMAP] = "android.tonemap", [ANDROID_LED] = "android.led", [ANDROID_INFO] = "android.info", [ANDROID_BLACK_LEVEL] = "android.blackLevel", };
对于每个Section端而言,其都占据一个索引区域section_bounds,比如ANDROID_CONTROL Section他所代表的control区域是从ANDROID_CONTROL_START到ANDROID_CONTROL_END之间,且每个Section所拥有的Index范围理论最大可到(1 << 16)大小,完全可以满足统一Section下不同的控制参数的维护。
以ANDROID_CONTROL为列,他的Section index = 1,即对应的section index区间可到(1<<16,2<<16),但一般以实际section中维护的tag的数量来结束,即ANDROID_CONTROL_END决定最终的section index区间。对于每一个section,其下具备不同数量的tag,这个tag是一个指定section下的index值,通过该值来维护一个tag所在的数据区域,此外每个tag都有相应的string name,在camera_metadata_tag_info.c通过struct tag_info_t来维护一个tag的相关属性:
typedef struct tag_info { const char *tag_name; uint8_t tag_type; } tag_info_t;
其中tag_name为对应section下不同tag的name值 ,tag_type指定了这个tag所维护的数据类型,包括如下:
enum { // Unsigned 8-bit integer (uint8_t) TYPE_BYTE = 0, // Signed 32-bit integer (int32_t) TYPE_INT32 = 1, // 32-bit float (float) TYPE_FLOAT = 2, // Signed 64-bit integer (int64_t) TYPE_INT64 = 3, // 64-bit float (double) TYPE_DOUBLE = 4, // A 64-bit fraction (camera_metadata_rational_t) TYPE_RATIONAL = 5, // Number of type fields NUM_TYPES };
对每一个section所拥有的tag_info信息,通过全局结构体tag_info_t *tag_info[ANDROID_SECTION_COUNT] 来定义。
下图是对整个Camera Metadata对不同section以及相应section下不同tag的布局图,下图以最常见的android.control Section为例进行了描述:
2. CameraMetadata通过camera_metadata来维护数据信息
假设现在存在一个CameraMetadata对象,那么他是如何将一个tag标记的参数维护起来的呢?
CameraMetadata::CameraMetadata(size_t entryCapacity, size_t dataCapacity) : mLocked(false) { mBuffer = allocate_camera_metadata(entryCapacity, dataCapacity); }
camera_metadata_t *allocate_camera_metadata(size_t entry_capacity, size_t data_capacity) { if (entry_capacity == 0) return NULL; size_t memory_needed = calculate_camera_metadata_size(entry_capacity, data_capacity); void *buffer = malloc(memory_needed); return place_camera_metadata(buffer, memory_needed, entry_capacity, data_capacity); }
一个CameraMetadata数据内存块中组成的最小基本单元是struct camera_metadata_buffer_entry,总的entry数目等信息需要struct camera_metadata_t来维护:
struct camera_metadata { size_t size; uint32_t version; uint32_t flags; size_t entry_count;//当前实际的entry数目 size_t entry_capacity;//entry最大可以存储的数目 uptrdiff_t entries_start; // Offset from camera_metadata size_t data_count;//当前占据的数据空间 size_t data_capacity;//最大可操作的数据容量 uptrdiff_t data_start; // Offset from camera_metadata,大容量数据存储的起始地址 void *user; // User set pointer, not copied with buffer uint8_t reserved[0]; };
对于每一个entry主要记录他的所代表的TAG,以及这个TAG的需要存储的数据类型,此外还需要记录这个entry是否是需要一个union offset来表示他当前数据量过大时的数据存储位置,
typedef struct camera_metadata_buffer_entry { uint32_t tag;//表示当时这个entry代表的tag值,即上文提到的section中不同的tag index值 size_t count; union { size_t offset; uint8_t value[4]; } data;//如果存储的数据量不大于4则直接存储。否则需要指点一个offset来表示便宜 uint8_t type;//维护的数据类型 uint8_t reserved[3]; } camera_metadata_buffer_entry_t;
3. update更新并建立参数
CameraMetadata支持不同类型的数据更新或者保存到camera_metadata_t中tag所在的entry当中去,以一个更新单字节的数据为例,data_count指定了数据的个数,而tag指定了要更新的entry。
status_t CameraMetadata::update(uint32_t tag, const uint8_t *data, size_t data_count) { status_t res; if (mLocked) { ALOGE("%s: CameraMetadata is locked", __FUNCTION__); return INVALID_OPERATION; } if ( (res = checkType(tag, TYPE_BYTE)) != OK) { return res; } return updateImpl(tag, (const void*)data, data_count); }
首先是通过checkType,主要是通过tag找到get_camera_metadata_tag_type其所应当支持的tag_type(因为具体的TAG是已经通过camera_metadata_tag_info.c源文件中的tag_info这个表指定了其应该具备的tag_type),比较两者是否一致,一致后才允许后续的操作,如这里需要TYPE_BYTE一致。
updataImpl函数主要是讲所有要写入的数据进行update操作。
status_t CameraMetadata::updateImpl(uint32_t tag, const void *data, size_t data_count) { status_t res; if (mLocked) { ALOGE("%s: CameraMetadata is locked", __FUNCTION__); return INVALID_OPERATION; } int type = get_camera_metadata_tag_type(tag); if (type == -1) { ALOGE("%s: Tag %d not found", __FUNCTION__, tag); return BAD_VALUE; } size_t data_size = calculate_camera_metadata_entry_data_size(type, data_count); res = resizeIfNeeded(1, data_size);//新建camera_metadata_t if (res == OK) { camera_metadata_entry_t entry; res = find_camera_metadata_entry(mBuffer, tag, &entry); if (res == NAME_NOT_FOUND) { res = add_camera_metadata_entry(mBuffer, tag, data, data_count);//将当前新的tag以及数据加入到camera_metadata_t } else if (res == OK) { res = update_camera_metadata_entry(mBuffer, entry.index, data, data_count, NULL); } } if (res != OK) { ALOGE("%s: Unable to update metadata entry %s.%s (%x): %s (%d)", __FUNCTION__, get_camera_metadata_section_name(tag), get_camera_metadata_tag_name(tag), tag, strerror(-res), res); } IF_ALOGV() { ALOGE_IF(validate_camera_metadata_structure(mBuffer, /*size*/NULL) != OK, "%s: Failed to validate metadata structure after update %p", __FUNCTION__, mBuffer); } return res; }
主要分为以下几个过程:
a.通过tag_type存储的数据类型,由calculate_camera_metadata_entry_data_size计算要写入的entry中的数据量。
b. resizeIfNeeded通过已有entry的数量等,增加entry_capacity,或者重建整个camera_metadata_t,为后续增加数据创建内存空间基础。
c. 通过find_camera_metadata_entry获取一个entry的入口camera_metadata_entry_t,如果存在这个tag对应的entry,则将camera_metadata_buffer_entry_t的属性信息转为camera_metadata_entry_t。
typedef struct camera_metadata_entry { size_t index;//在当前的entry排序中,其所在的index值 uint32_t tag; uint8_t type; size_t count; union { uint8_t *u8; int32_t *i32; float *f; int64_t *i64; double *d; camera_metadata_rational_t *r; } data;//针对不同数据类型,u8表示数据存储的入口地址,不大于4字节即为value[4]. } camera_metadata_entry_t;
d .add_camera_metadata_entry完成全新的entry更新与写入,即这个TAG目前不存在于这个camera_metadata_t中;update_camera_metadata_entry则是直接完成数据的更新。
3. Java层中CameraMetadata.java和CameraMetadataNative.java
下面以API2中java层中设置AF的工作模式为例,来说明这个参数设置的过程:
mPreviewBuilder.set(CaptureRequest.CONTROL_AF_MODE, CaptureRequest.CONTROL_AF_MODE_CONTINUOUS_PICTURE);
其中CONTROL_AF_MODE定义在CaptureRequest,java中如下以一个Key的形式存在:
public static final Key<Integer> CONTROL_AF_MODE = new Key<Integer>("android.control.afMode", int.class);
public Key(String name, Class<T> type) { mKey = new CameraMetadataNative.Key<T>(name, type); }
在CameraMetadataNative.java中Key的构造
public Key(String name, Class<T> type) { if (name == null) { throw new NullPointerException("Key needs a valid name"); } else if (type == null) { throw new NullPointerException("Type needs to be non-null"); } mName = name; mType = type; mTypeReference = TypeReference.createSpecializedTypeReference(type); mHash = mName.hashCode() ^ mTypeReference.hashCode(); }
其中CONTROL_AF_MODE_CONTINUOUS_PICTURE定义在CameraMetadata.java中
public static final int CONTROL_AF_MODE_CONTINUOUS_PICTURE = 4;
逐一定位set的入口:
a. mPreviewBuilder是CaptureRequest.java的build类,其会构建一个CaptureRequest
public Builder(CameraMetadataNative template) { mRequest = new CaptureRequest(template); }
private CaptureRequest() { mSettings = new CameraMetadataNative(); mSurfaceSet = new HashSet<Surface>(); }
mSetting建立的是一个CameraMetadataNative对象,主要用于和Native层进行接口交互,构造如下
public CameraMetadataNative() { super(); mMetadataPtr = nativeAllocate(); if (mMetadataPtr == 0) { throw new OutOfMemoryError("Failed to allocate native CameraMetadata"); } }
b. CaptureRequest.Build.set()
public <T> void set(Key<T> key, T value) { mRequest.mSettings.set(key, value); }
public <T> void set(CaptureRequest.Key<T> key, T value) { set(key.getNativeKey(), value); }
考虑到CaptureRequest extend CameraMetadata,则CaptureRequest.java中getNativeKey
public CameraMetadataNative.Key<T> getNativeKey() { return mKey; }
mKey即为之前构造的CameraMetadataNative.Key.
public <T> void set(Key<T> key, T value) { SetCommand s = sSetCommandMap.get(key); if (s != null) { s.setValue(this, value); return; } setBase(key, value); }
private <T> void setBase(Key<T> key, T value) { int tag = key.getTag(); if (value == null) { // Erase the entry writeValues(tag, /*src*/null); return; } // else update the entry to a new value Marshaler<T> marshaler = getMarshalerForKey(key); int size = marshaler.calculateMarshalSize(value); // TODO: Optimization. Cache the byte[] and reuse if the size is big enough. byte[] values = new byte[size]; ByteBuffer buffer = ByteBuffer.wrap(values).order(ByteOrder.nativeOrder()); marshaler.marshal(value, buffer); writeValues(tag, values); }
首先来看key.getTag()函数的实现,他是将这个key交由Native层后转为一个真正的在Java层中的tag值:
public final int getTag() { if (!mHasTag) { mTag = CameraMetadataNative.getTag(mName); mHasTag = true; } return mTag; }
public static int getTag(String key) { return nativeGetTagFromKey(key); }
是将Java层的String交由Native来转为一个Java层的tag值。
再来看writeValues的实现,同样调用的是一个native接口,很好的阐明了CameraMetadataNative的意思:
public void writeValues(int tag, byte[] src) { nativeWriteValues(tag, src); }
相关native层的实现在下一小节说明。
4. Native层的CameraMetadata结构完成camera参数的传递
在描述万了CameraMetadata数据的相关操作之后,可明确的一点是SECTION下的TAG是操作他的核心所在。
这里先说明一个在API1 Camera2Client 参数传递的过程,他采用的逻辑是还是在Java层预留了setParameters接口,只是当Parameter在设置时比起CameraClient而言,他是将这个Parameter根据不同的TAG形式直接绑定到CameraMetadata mPreviewRequest/mRecordRequest/mCaptureRequest中,这些数据会由Capture_Request转为camera3_capture_request中的camera_metadata_t settings完成参数从Java到native到HAL3的传递。
但是在Camera API2下,不再需要那么复杂的转换过程,在Java层中直接对参数进行设置并将其封装到Capture_Request即可,即参数控制由Java层来完成。这也体现了API2中Request和Result在APP中就大量存在的原因。对此为了和Framework Native层相关TAG数据的统一,在Java层中大量出现的参数设置是通过Section Tag的name来交由Native完成转换生成在Java层的TAG。
对于第三小节中提到的native层的实现,其对应的实现函数位于android_hardware_camera2_CameraMetadata.c中,如CameraMetadata_getTagFromKey是实现将一个Java层的string转为一个tag的值,他的主要原理如下:根据传入的key string值本质是由一个字符串组成的如上文中提到的android.control.mode。对比最初不同的Section name就可以发现前面两个x.y的字符串就是代表是Section name.而后面mode即是在该section下的tag数值,所以通过对这个string的分析可知,就可以定位他的section以及tag值。这样返回到Java层的就是key相应的tag值了。
如果要写数据,那么在native同样需要一个CameraMetadata对象,这里是在Java构造CameraMetadataNative时实现的,调用的native接口是nativeAllocate():
static jlong CameraMetadata_allocate(JNIEnv *env, jobject thiz) { ALOGV("%s", __FUNCTION__); return reinterpret_cast<jlong>(new CameraMetadata()); }
最终可以明确的是CameraMetadata相关的参数是被Java层来set/get,但本质是在native层进行了实现,后续如果相关控制参数是被打包到CaptureRequest中时传入到native时即操作的还是native中的CameraMetadata。
版权声明:本文为博主原创文章,未经博主允许不得转载。