linux initcall机制

Linux系统启动过程很复杂,因为它既需要支持模块静态加载机制也要支持动态加载机制。模块动态加载机制给系统提供了极大的灵活性,驱动程序既可支持静态编译进内核,也可以支持动态加载机制。Linux系统中对设备和子系统的初始化在最后进行,主要过程可以用下图表示。

图1

进入子系统初始化时,在内核init进程中进行设备初始化,最为复杂、诡异的机制莫过于do_initcalls()函数调用,该函数完成了所有需要静态加载模块的初始化,需要进行静态加载的内核模块,需要使用一些特定的宏进行处理,下面详细来说明一些linux内核中initcalls机制。

先来看看do_initcalls()函数原型:

图2

核心部分是639~671之间,该部分是一个函数指针调用,遍历_initcall_start~_initcall_end范围,逐个调用函数指针。

那_initcall_start~_initcall_end之间存放的是什么呢,可以以下面一幅示意图来说明。

图3

图左边是地址指针,右边是相关宏,使用相关宏处理函数指针,可以将被处理的函数指针放在特定的指针范围内。例如,网络设备层初始化函数是net_dev_init(),定义在net/core/dev.c中,在该函数下方有条宏处理subsys_initcall(net_dev_init),该宏完成将net_dev_init函数指针放在上图中.initcall4.init段中,在do_initcalls()函数调用时,其处于_initcall_start~_initcall_end直接,所以net_dev_init()就这样被调用了。

这种机制真是比较巧妙,也比较难以理解,设计初衷就是为了实现一个通用的启动流程,使移植或扩展时,只需要对需要启动加载的模块进行宏处理即可。

下面来详细了解这种机制的实现方法。

先说一说gcc对手动定位代码段位置的支持,_attribute_是gcc的关键字,指示编译器给符号设置特定属性。编译完成后输入到链接器的是各个带有符号表的文件,链接器对各个文件中符号进行重定位,_attribute_在该阶段进行处理,将指定符号放在链接生成文件段中特定位置,不单只指代码段,也包括数据段,如系统初始化中经常见到的_initdata,即将指定符号放到数据段特定位置。

当然,具体这些段是如何生成的,也是有文件进行配置,即在链接配置文件arch/xxx/vmlinux.ds.S.中,如下

图4

在2.6.16内核中INITCALLS已直接被替换为

*(.initcall1.init)
*(.initcall2.init)
*(.initcall3.init)
*(.initcall4.init)
*(.initcall5.init)
*(.initcall6.init)
*(.initcall7.init)

这和图3中的结构是对应的。接下来看看内核提供了哪些宏定义用来处理特定函数指针和数据。在include/linux/init.h文件中,包括各种常见的包装。

#define __define_initcall(level,fn)     static initcall_t __initcall_##fn __attribute_used__     __attribute__((__section__(".initcall" level ".init"))) = fn

#define core_initcall(fn)       __define_initcall("1",fn)
#define postcore_initcall(fn)   __define_initcall("2",fn)
#define arch_initcall(fn)       __define_initcall("3",fn)
#define subsys_initcall(fn)     __define_initcall("4",fn)
#define fs_initcall(fn)         __define_initcall("5",fn)
#define device_initcall(fn)     __define_initcall("6",fn)
#define late_initcall(fn)       __define_initcall("7",fn)

可以看出,内核为满足不同初始化等级,设计了1~7共7个等级,不同等级初始化代码用对应的宏进行处理,读者可以对照上表进行理解一下。还有其它一些宏,用于各种任务需求,如模块加载宏module_init(),module_exit(),其处理又略有不同,读者可以自己理解一下。

总的来说,initcalls机制提供给内核开发者或驱动开发者一个借口,方便将自己的函数添加到内核初始化列表中,在内核初始化最后阶段进行处理。

原文链接: http://blog.csdn.net/u012497906/article/details/46234675

时间: 2024-10-07 19:44:39

linux initcall机制的相关文章

linux进程同步机制_转

转自:Linux进程同步机制 具体应用可参考:线程同步       IPC之信号量 为了能够有效的控制多个进程之间的沟通过程,保证沟通过程的有序和和谐,OS必须提供一 定的同步机制保证进程之间不会自说自话而是有效的协同工作.比如在共享内存的通信方式中,两个或者多个进程都要对共享的内存进行数据写入,那么怎么才能保证一个进程在写入的过程中不被其它的进程打断,保证数据的完整性呢?又怎么保证读取进程在读取数据的过程中数据不会变动,保证读取出的数据是完整有效的 呢?常用的同步方式有: 互斥锁.条件变量.读

linux入门基础——linux权限机制

linux权限机制 权限 权限是操作系统用来限制对资源访问的机制,权限一般分为读.写.执行.系统中每个文件都拥有特定的权限.所属用户以及所属组,通过这样的机制来限制哪些用户.哪些组可以对特定文件进行什么样的操作. 每个进程都以某个用户的身份运行,所以进程的权限与用户的权限一样,用户的权限越大,该进程拥有的权限越大. 文件权限 linux中,每个文件拥有三种权限: 权限        对文件的影响        对目录的影响 r读取    可读取文件内容    可列出目录的内容 w写入    可修

linux进程调度机制剖析(基于3.16-rc4)

进程调度所使用到的数据结构: 1.就绪队列 内核为每一个cpu创建一个进程就绪队列,该队列上的进程均由该cpu执行,代码如下(kernel/sched/core.c). 1 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 定义了一个struct rq结构体数组,每个数组元素是一个就绪队列,对应一个cpu.下面看下struct rq结构体(kernel/sched/sched.h): 1 struct rq { 2 /* runqueue

android & Linux uevent机制

Linux uevent机制 Uevent是内核通知android有状态变化的一种方法,比如USB线插入.拔出,电池电量变化等等.其本质是内核发送(可以通过socket)一个字符串,应用层(android)接收并解释该字符串,获取相应信息. 一.Kernel侧: UEVENT的发起在Kernel端,主要是通过函数 int kobject_uevent_env(struct kobject *kobj, enum kobject_action action,char *envp_ext[]) 该函

利用linux信号机制调试段错误(Segment fault)

在实际开发过程中,大家可能会遇到段错误的问题,虽然是个老问题,但是其带来的隐患是极大的,只要出现一次,程序立即崩溃中止.如果程序运行在PC中,segment fault的调试相对比较方便,因为可以通过串口.显示器可以查看消息,只要程序运行,通过GDB调试工具即可捕捉产生segment fault的具体原因.但是不知大家有没有想法,当程序运行在嵌入式设备上时,你所面临资源的缺乏,你没有串口打印信息,没有显示器可查看,你不知道程序运行的状态,如果程序的产生segment falut这种bug发生的周

7.Linux权限机制

7.Linux权限机制 ·权限是操作系统用来限制对资源访问的机制,权限一般分为读/写/执行,系统中每个文件都拥有特定的权限.所属用户及所属组,通过这样的机制来限制哪些用户.组可以对特定文件进行什么样的操作, ·每个进程都是以某个用户的身份运行,所以进程的权限与该用户的权限一样,用户权限大,该进程拥有的权限就大, ·文件权限: ·r,读取,可读取文件内容,可列出目录内容, ·w,写入,可修改文件内容,可在目录中创建删除文件, ·x,执行,可以作为命令执行,可访问目录内容,目录必须拥有x权限,否则无

Linux信号机制

信号分类 不可靠信号 VS. 可靠信号 Linux信号机制基本上是从UNIX系统中继承过来的.早期UNIX系统中的信号机制比较简单和原始,后来在实践中暴露出一些问题,它的主要问题是: 1.进程每次处理信号后,就将对信号的响应设置为默认动作.在某些情况下,将导致对信号的错误处理:因此,用户如果不希望这样的操作,那么就要在信号处理函数结尾再一次调用signal(),重新安装该信号. 2.早期UNIX下的不可靠信号主要指的是进程可能对信号做出错误的反应以及信号可能丢失. Linux支持不可靠信号,但是

linux运行机制

linux运行机制,主要包括初始化init系统.系统运行级别.系统关闭方法.下图为系统运行流程图.

Linux模块机制浅析

Linux模块机制浅析   Linux允许用户通过插入模块,实现干预内核的目的.一直以来,对linux的模块机制都不够清晰,因此本文对内核模块的加载机制进行简单地分析. 模块的Hello World! 我们通过创建一个简单的模块进行测试.首先是源文件main.c和Makefile. [email protected]:~/module$ cat main.c #include<linux/module.h> #include<linux/init.h> static int __i