(转)思考:矩阵及变换,以及矩阵在DirectX和OpenGL中的运用问题:左乘/右乘,行优先/列优先,...

转自:http://www.cnblogs.com/soroman/archive/2008/03/21/1115571.html

思考:矩阵及变换,以及矩阵在DirectX和OpenGL中的运用

1。矩阵和线性变换:一一对应

矩阵是用来表示线性变换的一种工具,它和线性变换之间是一一对应的。
考虑线性变换:
a11*x1 + a12*x2 + ...+a1n*xn = x1‘
a21*x1 + a22*x2 + ...+a2n*xn = x2‘
...
am1*x1 + am2*x2 + ...+amn*xn = xm‘

对应地,用矩阵来表示就是:
|a11 a12 ... a1n   |   |x1|     |x1‘| 
|a21 a22 ... a2n   |   |x2|     |x2‘|
|...                      |* |...|=    |... |
|am1 am2 ... amn |   |xn|     |xm‘|

也可以如下来表示:
                   |a11 a21 ... am1| 
                   |a12 a22 ... am2|  
|x1 x2...xn|*|...                   |= |x1‘ x2‘... xm‘|      
                   |a1n a2n ... amn|

其中涉及到6个矩阵。分别为A[m*n],X[n*1],X‘[m*1]以及X[1*n],A[n*m],X‘[1*m]。
可以理解成向量x(x1,x2,...,xn)经过一个变换矩阵A[m*n]或A[n*m]后变成另外一个向量x‘(x1‘,x2‘,...,xm‘))。

2。矩阵的表示法:行矩阵 vs. 列矩阵

行矩阵和列矩阵的叫法是衍生自行向量和列向量。
其实,矩阵A[m*n]可以看成是m个n维的row vector构成的row matrix,也可看成是n个m维的column vector构成的column matrix。
其中,X[n*1]/X‘[m*1]就等价于1个n/m维的column vector。X[1*n]/X‘[1*m]就等价于1个n/m维的row vector。
Row matrix和Column matrix只是两种不同的表示法,前者表示把一个向量映射到矩阵的一行,后者表示把一个向量映射到矩阵的一列。
本质上体现的是同一线性变换。矩阵运算规定了它们可以通过转置运算来改变这个映射关系。

3。矩阵的相乘顺序:前乘或左乘 vs. 后乘或右乘

需要注意的是两种不同的表示法对应不同的运算顺序:
如果对一个column vector做变换,则变换矩阵(row matrix/vectors)必须出现在乘号的左边,即pre-multiply,又叫前乘或左乘。
如果对一个row vector做变换,则变换矩阵(column matrix/vectors)必须出现在乘号的右边,即post-multiply,又叫后乘或右乘。
一般不会弄错,因为矩阵乘法性质决定了相同的内维数的矩阵才能相乘。至于为什么是这个规律,为什么要row vector乘以column vector或column vector乘以row vector???想想吧。。。

所以左乘还是右乘,跟被变换的vector的表示形式相关,而非存储顺序决定。

4。矩阵的存储顺序:按行优先存储 vs. 按列优先存储

涉及到在计算机中使用矩阵时,首先会碰到存储矩阵的问题。
因为计算机存储空间是先后有序的,如何存储A[m*n]的m*n个元素是个问题,一般有两种:按行优先存储和按列优先存储。

row-major:存成a11,a12,...,amn的顺序。
column-major:存成a11,a21,...,amn的顺序。

这样问题就来了,给你一个存储好的矩阵元素集合,你不知道如何读取元素组成一个矩阵,比如你不知道a12该放在几行几列上。
所以,每个系统都有自己的规定,比如以什么规则存储的就以什么规则读取。DX使用Row-major,OGL使用Column-major.即一个相同的矩阵A[m*n]在DX和OGL中的存储序列是不一样的,这带来了系统间转换的麻烦。

不过,一个巧合的事情是:DX中,点/向量是用Row Vector来表示的,所以对应的变换矩阵是Column Matrix/Vectors,而OGL中,点/向量是用Column Vector来表示的,所以对应的变换矩阵是Row Matrix/Vectors.所以,如果在DX中对一个向量x(x1,x2,x3,1)或点(x(x1,x2,x3,1))应用A[4*4]的矩阵变换,就是x‘ = x(x1,x2,x3,1) * A[4*4],由于采用Row-major,所以它的存储序列是a11,a12,...,a43,a44。在OGL中,做同样的向量或点的变换,因为其使用Row Matrix/Vectors,其应用的变换矩阵应该是A‘[4*4] = A[4*4]( ‘ 表示Transpose/转置),就是x‘ = A‘[4*4] * x‘(x1,x2,x3,1),但是由于采用Column-major,它的存储序列正好也是a11,a12,...,a43,a44!!!
所以实际上,对DX和OGL来讲,同一个变换,存储的矩阵元素序列是一样的.比如:都是第13,14,15个元素存储了平移变化量deltaZ,deltaY,deltaZ.

Refs:
http://mathworld.wolfram.com/Matrix.html
http://www.gamedev.net/community/forums/topic.asp?topic_id=321862

时间: 2024-10-09 06:09:03

(转)思考:矩阵及变换,以及矩阵在DirectX和OpenGL中的运用问题:左乘/右乘,行优先/列优先,...的相关文章

[转载]矩阵及变换,以及矩阵在DirectX和OpenGL中的运用问题:左乘/右乘,行优先/列优先

[转载]http://www.xuebuyuan.com/882848.html (一)首先,无论dx还是opengl,所表示的矢量和矩阵都是依据线性代数中的标准定义的:“矩阵A与B的乘积矩阵C的第i行第j列的元素c(ij)等于A的第i行于B的第j列的对应元素乘积的和.”(实用数学手册,科学出版社,第二版)例如c12 = a11*b11+a12*b21+a12*b13... (二)在明确了这一点后,然后我们再看“矩阵的存储方式”,矩阵存储方式有两种,一种是“行主序(row-major order

矩阵-DirectX与OpenGL的不同

矩阵是三维图形学中不可或缺的部分,几乎所有和变换相关的操作都涉及矩阵,世界变换,视图变换,投影变换,视口变换无一不需要矩阵,但是当今的两大主流图形库DirectX和OpenGL对矩阵操作却有着细微的差别,大多数的图形学书籍都以OpenGL为基础进行阐述,游戏编程类的书籍则更多使用DirectX,这就难免产生混淆,今天这篇主要讲讲两者在操作矩阵的时候有何不同. 矩阵 在三维图形学中,一般使用四维矩阵,也就是四行四列的方阵,下面是一个典型的四维矩阵 既然是三维图形学,为什么使用四维矩阵呢?主要有两个

HihoCoder 1480:矩阵填数 (杨氏矩阵 || 钩子公式 + 筛逆元)

描述 小Hi在玩一个游戏,他需要把1, 2, 3, ... NM填入一个N行M列的矩阵中,使得矩阵每一行从左到右.每一列从上到下都是递增的. 例如如下是3x3的一种填法: 136 247 589 给定N和M,小Hi希望知道一共有多少种不同的填法. 输入 一行包含两个整数N和M. 对于60%的数据 1 <= N <= 2, 1 <= M <= 100000 对于20%的数据 N = 3, 1 <= M <= 100 对于100%的数据 1 <= N <= 3,

矩阵及其变换、特征值与特征向量的物理意义

矩阵及其变换.特征值与特征向量的物理意义 最近在做聚类的时候用到了主成分分析PCA技术,里面涉及一些关于矩阵特征值和特征向量的内容,在网上找到一篇对特征向量及其物理意义说明较好的文章,整理下来,分享一下. 一.矩阵基础[1]: 矩阵是一个表示二维空间的数组,矩阵可以看做是一个变换.在线性代数中,矩阵可以把一个向量变换到另一个位置,或者说从一个坐标系变换到另一个坐标系.矩阵的“基”,实际就是变换时所用的坐标系.而所谓的相似矩阵(),就是同样的变换,只不过使用了不同的坐标系.线性代数中的相似矩阵实际

Opengl中矩阵和perspective/ortho的相互转换

Opengl中矩阵和perspective/ortho的相互转换 定义矩阵 Opengl变换需要用四维矩阵.我们来定义这样的矩阵. +BIT祝威+悄悄在此留下版了个权的信息说: 四维向量 首先,我们定义一个四维向量vec4. 1 /// <summary> 2 /// Represents a four dimensional vector. 3 /// </summary> 4 public struct vec4 5 { 6 public float x; 7 public f

C语言之基本算法42—矩阵转置及按行按列排序

//矩阵转置 按行按列排序 /* ================================================================== 题目:输入m*n矩阵,按行升序排列输出. 输入: 4 3 5 6 2 9 8 1 2 8 7 1 2 3 8 输出: 2 3 4 5 6 1 2 8 8 9 1 2 3 7 8 ================================================================== */ #includ

【c语言】二维数组中的查找,杨氏矩阵在一个二维数组中,每行都依照从左到右的递增的顺序排序,输入这种一个数组和一个数,推断数组中是否包括这个数

// 二维数组中的查找,杨氏矩阵在一个二维数组中.每行都依照从左到右的递增的顺序排序. // 每列都依照从上到下递增的顺序排序.请完毕一个函数,输入这种一个数组和一个数.推断数组中是否包括这个数 #include <stdio.h> #define col 4 #define rol 4 int yang(int(*p)[col], int num) { int i = 0; int j = col - 1; while (j+1) { int *q = &(p[i][j]); if

将两个矩阵相乘,A为x行y列的矩阵,B为y行z列的矩阵,A*B

m1*m2=m其中是一个x行z列的一个矩阵,例如 代码如下: #include<stdio.h>void matrix_multiply(int *m1, int *m2, int *m, int x, int y, int z){ int row = 0;  //m矩阵的行 int col = 0;  //m的列 int k = 0; int *m1p = m1;     int *m2p = m2; for (row = 0; row < x; row++) {  for (col

Matlab Delete Row or Col 删除矩阵的行或列

Matlab中,我们有时候要删除矩阵中的某行某列,可以采用下列方法进行删除: a = [ 1 2 3 4 5 6 7 8 9]; a(2,:) = []; % Delete row 2 a(:,2) = []; % Delete col 2