深入理解HashMap

转自: http://annegu.iteye.com/blog/539465 

Hashmap是一种非常常用的、应用广泛的数据类型,最近研究到相关的内容,就正好复习一下。网上关于hashmap的文章很多,但到底是自己学习的总结,就发出来跟大家一起分享,一起讨论。
1、hashmap的数据结构
要知道hashmap是什么,首先要搞清楚它的数据结构,在java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,hashmap也不例外。Hashmap实际上是一个数组和链表的结合体(在数据结构中,一般称之为“链表散列“),请看下图(横排表示数组,纵排表示数组元素【实际上是一个链表】)。

从图中我们可以看到一个hashmap就是一个数组结构,当新建一个hashmap的时候,就会初始化一个数组。我们来看看java代码:

/**
     * The table, resized as necessary. Length MUST Always be a power of two.
     *  FIXME 这里需要注意这句话,至于原因后面会讲到
     */
    transient Entry[] table; 

static class Entry<K,V> implements Map.Entry<K,V> {
        final K key;
        V value;
        final int hash;
        Entry<K,V> next;
..........
}

上面的Entry就是数组中的元素,它持有一个指向下一个元素的引用,这就构成了链表。

         当我们往hashmap中put元素的时候,先根据key的hash值得到这个元素在数组中的位置(即下标),然后就可以把这个元素放到对应的位置中了。如果这个元素所在的位子上已经存放有其他元素了,那么在同一个位子上的元素将以链表的形式存放,新加入的放在链头,最先加入的放在链尾。从hashmap中get元素时,首先计算key的hashcode,找到数组中对应位置的某一元素,然后通过key的equals方法在对应位置的链表中找到需要的元素。从这里我们可以想象得到,如果每个位置上的链表只有一个元素,那么hashmap的get效率将是最高的,但是理想总是美好的,现实总是有困难需要我们去克服,哈哈~

2、hash算法

我们可以看到在hashmap中要找到某个元素,需要根据key的hash值来求得对应数组中的位置。如何计算这个位置就是hash算法。前面说过hashmap的数据结构是数组和链表的结合,所以我们当然希望这个hashmap里面的元素位置尽量的分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,而不用再去遍历链表。

所以我们首先想到的就是把hashcode对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,“模”运算的消耗还是比较大的,能不能找一种更快速,消耗更小的方式那?java中时这样做的,

static int indexFor(int h, int length) {
       return h & (length-1);
   }

首先算得key得hashcode值,然后跟数组的长度-1做一次“与”运算(&)。看上去很简单,其实比较有玄机。比如数组的长度是2的4次方,那么hashcode就会和2的4次方-1做“与”运算。很多人都有这个疑问,为什么hashmap的数组初始化大小都是2的次方大小时,hashmap的效率最高,我以2的4次方举例,来解释一下为什么数组大小为2的幂时hashmap访问的性能最高。

         看下图,左边两组是数组长度为16(2的4次方),右边两组是数组长度为15。两组的hashcode均为8和9,但是很明显,当它们和1110“与”的时候,产生了相同的结果,也就是说它们会定位到数组中的同一个位置上去,这就产生了碰撞,8和9会被放到同一个链表上,那么查询的时候就需要遍历这个链表,得到8或者9,这样就降低了查询的效率。同时,我们也可以发现,当数组长度为15的时候,hashcode的值会与14(1110)进行“与”,那么最后一位永远是0,而0001,0011,0101,1001,1011,0111,1101这几个位置永远都不能存放元素了,空间浪费相当大,更糟的是这种情况中,数组可以使用的位置比数组长度小了很多,这意味着进一步增加了碰撞的几率,减慢了查询的效率!

          所以说,当数组长度为2的n次幂的时候,不同的key算得得index相同的几率较小,那么数据在数组上分布就比较均匀,也就是说碰撞的几率小,相对的,查询的时候就不用遍历某个位置上的链表,这样查询效率也就较高了。

          说到这里,我们再回头看一下hashmap中默认的数组大小是多少,查看源代码可以得知是16,为什么是16,而不是15,也不是20呢,看到上面annegu的解释之后我们就清楚了吧,显然是因为16是2的整数次幂的原因,在小数据量的情况下16比15和20更能减少key之间的碰撞,而加快查询的效率。

所以,在存储大容量数据的时候,最好预先指定hashmap的size为2的整数次幂次方。就算不指定的话,也会以大于且最接近指定值大小的2次幂来初始化的,代码如下(HashMap的构造方法中):

// Find a power of 2 >= initialCapacity
        int capacity = 1;
        while (capacity < initialCapacity)
            capacity <<= 1;

3、hashmap的resize

       当hashmap中的元素越来越多的时候,碰撞的几率也就越来越高(因为数组的长度是固定的),所以为了提高查询的效率,就要对hashmap的数组进行扩容,数组扩容这个操作也会出现在ArrayList中,所以这是一个通用的操作,很多人对它的性能表示过怀疑,不过想想我们的“均摊”原理,就释然了,而在hashmap数组扩容之后,最消耗性能的点就出现了:原数组中的数据必须重新计算其在新数组中的位置,并放进去,这就是resize。

         那么hashmap什么时候进行扩容呢?当hashmap中的元素个数超过数组大小*loadFactor时,就会进行数组扩容,loadFactor的默认值为0.75,也就是说,默认情况下,数组大小为16,那么当hashmap中元素个数超过16*0.75=12的时候,就把数组的大小扩展为2*16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常消耗性能的操作,所以如果我们已经预知hashmap中元素的个数,那么预设元素的个数能够有效的提高hashmap的性能。比如说,我们有1000个元素new HashMap(1000), 但是理论上来讲new HashMap(1024)更合适,不过上面annegu已经说过,即使是1000,hashmap也自动会将其设置为1024。 但是new HashMap(1024)还不是更合适的,因为0.75*1000 < 1000, 也就是说为了让0.75 * size > 1000, 我们必须这样new HashMap(2048)才最合适,既考虑了&的问题,也避免了resize的问题。

4、key的hashcode与equals方法改写

       在第一部分hashmap的数据结构中,annegu就写了get方法的过程:首先计算key的hashcode,找到数组中对应位置的某一元素,然后通过key的equals方法在对应位置的链表中找到需要的元素。所以,hashcode与equals方法对于找到对应元素是两个关键方法。

Hashmap的key可以是任何类型的对象,例如User这种对象,为了保证两个具有相同属性的user的hashcode相同,我们就需要改写hashcode方法,比方把hashcode值的计算与User对象的id关联起来,那么只要user对象拥有相同id,那么他们的hashcode也能保持一致了,这样就可以找到在hashmap数组中的位置了。如果这个位置上有多个元素,还需要用key的equals方法在对应位置的链表中找到需要的元素,所以只改写了hashcode方法是不够的,equals方法也是需要改写滴~当然啦,按正常思维逻辑,equals方法一般都会根据实际的业务内容来定义,例如根据user对象的id来判断两个user是否相等。

在改写equals方法的时候,需要满足以下三点:

(1) 自反性:就是说a.equals(a)必须为true。

(2) 对称性:就是说a.equals(b)=true的话,b.equals(a)也必须为true。

(3) 传递性:就是说a.equals(b)=true,并且b.equals(c)=true的话,a.equals(c)也必须为true。

通过改写key对象的equals和hashcode方法,我们可以将任意的业务对象作为map的key(前提是你确实有这样的需要)。

总结:

        本文主要描述了HashMap的结构,和hashmap中hash函数的实现,以及该实现的特性,同时描述了hashmap中resize带来性能消耗的根本原因,以及将普通的域模型对象作为key的基本要求。尤其是hash函数的实现,可以说是整个HashMap的精髓所在,只有真正理解了这个hash函数,才可以说对HashMap有了一定的理解。

时间: 2024-11-06 22:16:45

深入理解HashMap的相关文章

十分钟深入理解HashMap源码

十分钟就要深入理解HashMap源码,看完你能懂?我觉得得再多看一分钟,才能完全掌握! 终于来到比较复杂的HashMap,由于内部的变量,内部类,方法都比较多,没法像ArrayList那样直接平铺开来说,因此准备从几个具体的角度来切入. 桶结构 HashMap的每个存储位置,又叫做一个桶,当一个Key&Value进入map的时候,依据它的hash值分配一个桶来存储. 看一下桶的定义:table就是所谓的桶结构,说白了就是一个节点数组. transient Node<K,V>[] tab

深入理解HashMap(及hash函数的真正巧妙之处)

原文地址:http://www.iteye.com/topic/539465 Hashmap是一种非常常用的.应用广泛的数据类型,最近研究到相关的内容,就正好复习一下.网上关于hashmap的文章很多,但到底是自己学习的总结,就发出来跟大家一起分享,一起讨论. 1.hashmap的数据结构 要知道hashmap是什么,首先要搞清楚它的数据结构,在java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,hashmap也不例外.

深入理解HashMap、ConcurrentHashMap

前言 Map 这样的 Key Value 在软件开发中是非常经典的结构,常用于在内存中存放数据. 本篇主要想讨论 ConcurrentHashMap 这样一个并发容器,在正式开始之前我觉得有必要谈谈 HashMap,没有它就不会有后面的 ConcurrentHashMap. HashMap 众所周知 HashMap 底层是基于 数组 + 链表 组成的,不过在 jdk1.7 和 1.8 中具体实现稍有不同. Base 1.7 1.7 中的数据结构图: 先来看看 1.7 中的实现. 这是 HashM

深入理解HashMap和CurrentHashMap

原文链接:https://segmentfault.com/a/1190000015726870 前言 Map 这样的 Key Value 在软件开发中是非常经典的结构,常用于在内存中存放数据. 本篇主要想讨论 ConcurrentHashMap 这样一个并发容器,在正式开始之前我觉得有必要谈谈 HashMap,没有它就不会有后面的 ConcurrentHashMap. HashMap 众所周知 HashMap 底层是基于 数组 + 链表 组成的,不过在 jdk1.7 和 1.8 中具体实现稍有

从源码来理解HashMap和HashSet

HashMap类 HashMap 内有一个table数组存放<K,V>,用关键字transient,则说明HashMap的table数组值是存放在内存中,不作为序列化数据保存. put函数 如果key==null, 注意:table是一个数组,而这个数组下每个元素的下面其实是个链表,都是通过hash(key)得到相同k位置(table[k]) 空值统一放在table的0位置,先遍历table[0]下的所有元素,如果插入的key==null,则将原本Entry的value替换,返回之前的值(ol

从源码理解HashMap

package java.util; import java.io.IOException; import java.io.InvalidObjectException; import java.io.Serializable; import java.lang.reflect.ParameterizedType; import java.lang.reflect.Type; import java.util.function.BiConsumer; import java.util.funct

深入理解-HashMap

一.HashMap概述 HashMap 在家族中位置:实现了Map接口,继承AbstractMap类.HashMap 允许key/value 都为null. 二.HashMap存储结构 HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体.在其内部维护一个Entry类型数组,初始大小为16. 1 /** 2 * The table, resized as necessary. Length MUST Always be a power of two. 3 */ 4 transi

理解HashMap底层原理,一个简单的HashMap例子

package com.jl.testmap; /** * 自定义一个HashMap * @author JiangLai * */ public class MyHashMap<K,V> { Node<K,V>[] table;//位桶数组 int size;//存放键值对的个数 public MyHashMap() { table = new Node[16];//长度一般定义为2的整数次幂 } public void put(K key,V value) { //定义新的节点

如果你这么去理解HashMap就会发现它真的很简单

Java中的HashMap相信大家都不陌生,也是大家编程时最常用的数据结构之一,各种面试题更是恨不得掘地三尺的去问HashMap.HashTable.ConcurrentHashMap,无论面试题多么刁钻的问,只要我们真正的掌握了它的设计思想,便可以不变应万变,hold住所有的面试题了. 本文主要包含以下内容,力求深入浅出一步一步彻底明白HashMap的设计思想: 数组的优势 数组是特殊的键值对 Hash函数 Hash冲突 此时再看HashMap源码 文章干货内容较多,建议大家“收藏”后持续阅读