Python中的类(上)

在Python中,可以通过class关键字定义自己的类,然后通过自定义的类对象类创建实例对象。

例如,下面创建了一个Student的类,并且实现了这个类的初始化函数"__init__":

class Student(object):
    count = 0
    books = []
    def __init__(self, name, age):
        self.name = name
        self.age = age
    pass

接下来就通过上面的Student类来看看Python中类的相关内容。

数据属性

在上面的Student类中,"count""books""name"和"age"都被称为类的数据属性,但是它们又分为类数据属性和实例数据属性。

类数据属性和实例数据属性

首先看一段代码,代码中分别展示了对类数据属性和实例数据属性的访问:

Student.books.extend(["python", "javascript"])
print "Student book list: %s" %Student.books
# class can add class attribute after class defination
Student.hobbies = ["reading", "jogging", "swimming"]
print "Student hobby list: %s" %Student.hobbies
print dir(Student)

print 

wilber = Student("Wilber", 28)
print "%s is %d years old" %(wilber.name, wilber.age)
# class instance can add new attribute
# "gender" is the instance attribute only belongs to wilber
wilber.gender = "male"
print "%s is %s" %(wilber.name, wilber.gender)
# class instance can access class attribute
print dir(wilber)
wilber.books.append("C#")
print wilber.books

print 

will = Student("Will", 27)
print "%s is %d years old" %(will.name, will.age)
# will shares the same class attribute with wilber
# will don‘t have the "gender" attribute that belongs to wilber
print dir(will)
print will.books

通过内建函数dir(),或者访问类的字典属性__dict__,这两种方式都可以查看类有哪些属性,代码的输出为:

对于类数据属性和实例数据属性,可以总结为:

  1. 类数据属性属于类本身,可以通过类名进行访问/修改
  2. 类数据属性也可以被类的所有实例访问/修改
  3. 在类定义之后,可以通过类名动态添加类数据属性,新增的类属性也被类和所有实例共有
  4. 实例数据属性只能通过实例访问
  5. 在实例生成后,还可以动态添加实例数据属性,但是这些实例数据属性只属于该实例

特殊的类属性

对于所有的类,都有一组特殊的属性:


类属性


含义


__name__


类的名字(字符串)


__doc__


类的文档字符串


__bases__


类的所有父类组成的元组


__dict__


类的属性组成的字典


__module__


类所属的模块


__class__


类对象的类型

通过这些属性,可以得到 Student类的一些信息:

class Student(object):
    ‘‘‘
    this is a Student class
    ‘‘‘
    count = 0
    books = []
    def __init__(self, name, age):
        self.name = name
        self.age = age
    pass

print Student.__name__
print Student.__doc__
print Student.__bases__
print Student.__dict__
print Student.__module__
print Student.__class

代码输出为:

属性隐藏

从上面的介绍了解到,类数据属性属于类本身,被所有该类的实例共享;并且,通过实例可以去访问/修改类属性。但是,在通过实例中访问类属性的时候一定要谨慎,因为可能出现属性"隐藏"的情况。

继续使用上面的Student类,来看看属性隐藏:

wilber = Student("Wilber", 28)

print "Student.count is wilber.count: ", Student.count is wilber.count
wilber.count = 1
print "Student.count is wilber.count: ", Student.count is wilber.count
print Student.__dict__
print wilber.__dict__
del wilber.count
print "Student.count is wilber.count: ", Student.count is wilber.count

print 

wilber.count += 3
print "Student.count is wilber.count: ", Student.count is wilber.count
print Student.__dict__
print wilber.__dict__

del wilber.count
print

print "Student.books is wilber.books: ", Student.books is wilber.books
wilber.books = ["C#", "Python"]
print "Student.books is wilber.books: ", Student.books is wilber.books
print Student.__dict__
print wilber.__dict__
del wilber.books
print "Student.books is wilber.books: ", Student.books is wilber.books

print 

wilber.books.append("CSS")
print "Student.books is wilber.books: ", Student.books is wilber.books
print Student.__dict__
print wilber.__dict__

代码的输出为:

分析一下上面代码的输出:

  • 对于不可变类型的类属性Student.count,可以通过实例wilber进行访问,并且"Student.count is wilber.count"
  • 当通过实例赋值/修改count属性的时候,都将为实例wilber新建一个count实例属性,这时,"Student.count is not wilber.count"
  • 当通过"del wilber.count"语句删除实例的count属性后,再次成为"Student.count is wilber.count"
  • 同样对于可变类型的类属性Student.books,可以通过实例wilber进行访问,并且"Student. books is wilber. books"
  • 当通过实例赋值books属性的时候,都将为实例wilber新建一个books实例属性,这时,"Student. Books is not wilber. books"
  • 当通过"del wilber. books"语句删除实例的books属性后,再次成为"Student. books is wilber. books"
  • 当通过实例修改books属性的时候,将修改wilber.books指向的内存地址(即Student.books),此时,"Student. Books is wilber. books"

注意,虽然通过实例可以访问类属性,但是,不建议这么做,最好还是通过类名来访问类属性,从而避免属性隐藏带来的不必要麻烦。

方法

在一个类中,可能出现三种方法,实例方法、静态方法和类方法,下面来看看三种方法的不同。

实例方法

实例方法的第一个参数必须是"self","self"类似于C++中的"this"。

实例方法只能通过类实例进行调用,这时候"self"就代表这个类实例本身。通过"self"可以直接访问实例的属性。

class Student(object):
    ‘‘‘
    this is a Student class
    ‘‘‘
    count = 0
    books = []
    def __init__(self, name, age):
        self.name = name
        self.age = age

    def printInstanceInfo(self):
        print "%s is %d years old" %(self.name, self.age)
    pass

wilber = Student("Wilber", 28)
wilber.printInstanceInfo()

类方法

类方法以cls作为第一个参数,cls表示类本身,定义时使用@classmethod装饰器。通过cls可以访问类的相关属性。

class Student(object):
    ‘‘‘
    this is a Student class
    ‘‘‘
    count = 0
    books = []
    def __init__(self, name, age):
        self.name = name
        self.age = age

    @classmethod
    def printClassInfo(cls):
        print cls.__name__
        print dir(cls)
    pass

Student.printClassInfo()
wilber = Student("Wilber", 28)
wilber.printClassInfo()

代码的输出为,从这段代码可以看到,类方法可以通过类名访问,也可以通过实例访问。

静态方法

与实例方法和类方法不同,静态方法没有参数限制,既不需要实例参数,也不需要类参数,定义的时候使用@staticmethod装饰器。

同类方法一样,静态法可以通过类名访问,也可以通过实例访问。

class Student(object):
    ‘‘‘
    this is a Student class
    ‘‘‘
    count = 0
    books = []
    def __init__(self, name, age):
        self.name = name
        self.age = age

    @staticmethod
    def printClassAttr():
        print Student.count
        print Student.books
    pass

Student.printClassAttr()
wilber = Student("Wilber", 28)
wilber.printClassAttr()

这三种方法的主要区别在于参数,实例方法被绑定到一个实例,只能通过实例进行调用;但是对于静态方法和类方法,可以通过类名和实例两种方式进行调用。

访问控制

Python中没有访问控制的关键字,例如private、protected等等。但是,在Python编码中,有一些约定来进行访问控制。

单下划线"_"

在Python中,通过单下划线"_"来实现模块级别的私有化,一般约定以单下划线"_"开头的变量、函数为模块私有的,也就是说"from moduleName import *"将不会引入以单下划线"_"开头的变量、函数。

现在有一个模块lib.py,内容用如下,模块中一个变量名和一个函数名分别以"_"开头:

numA = 10
_numA = 100

def printNum():
    print "numA is:", numA
    print "_numA is:", _numA

def _printNum():
    print "numA is:", numA
print "_numA is:", _numA

当通过下面代码引入lib.py这个模块后,所有的以"_"开头的变量和函数都没有被引入,如果访问将会抛出异常:

from lib import *
print numA
printNum()

print _numA
#print _printNum()

双下划线"__"

对于Python中的类属性,可以通过双下划线"__"来实现一定程度的私有化,因为双下划线开头的属性在运行时会被"混淆"(mangling)。

在Student类中,加入了一个"__address"属性:

class Student(object):
    def __init__(self, name, age):
        self.name = name
        self.age = age
        self.__address = "Shanghai"

    pass

wilber = Student("Wilber", 28)
print wilber.__address    

当通过实例wilber访问这个属性的时候,就会得到一个异常,提示属性"__address"不存在。

其实,通过内建函数dir()就可以看到其中的一些原由,"__address"属性在运行时,属性名被改为了"_Student__address"(属性名前增加了单下划线和类名)

>>> wilber = Student("Wilber", 28)
>>> dir(wilber)
[‘_Student__address‘, ‘__class__‘, ‘__delattr__‘, ‘__dict__‘, ‘__doc__‘, ‘__form
at__‘, ‘__getattribute__‘, ‘__hash__‘, ‘__init__‘, ‘__module__‘, ‘__new__‘, ‘__r
educe__‘, ‘__reduce_ex__‘, ‘__repr__‘, ‘__setattr__‘, ‘__sizeof__‘, ‘__str__‘, ‘
__subclasshook__‘, ‘__weakref__‘, ‘age‘, ‘name‘]
>>>

所以说,即使是双下划线,也没有实现属性的私有化,因为通过下面的方式还是可以直接访问"__address"属性:

>>> wilber = Student("Wilber", 28)
>>> print wilber._Student__address
Shanghai
>>>

双下划线的另一个重要的目地是,避免子类对父类同名属性的冲突。

看下面一个例子:

class A(object):
    def __init__(self):
        self.__private()
        self.public()

    def __private(self):
        print ‘A.__private()‘

    def public(self):
        print ‘A.public()‘

class B(A):
    def __private(self):
        print ‘B.__private()‘

    def public(self):
        print ‘B.public()‘

b = B()  

当实例化B的时候,由于没有定义__init__函数,将调用父类的__init__,但是由于双下划线的"混淆"效果,"self.__private()"将变成 "self._A__private()"。

看到这里,就清楚为什么会有如下输出了:

"_"和" __"的使用 更多的是一种规范/约定,不没有真正达到限制的目的:

  • "_":以单下划线开头的表示的是protected类型的变量,即只能允许其本身与子类进行访问;同时表示弱内部变量标示,如,当使用"from moduleNmae import *"时,不会将以一个下划线开头的对象引入。
  • "__":双下划线的表示的是私有类型的变量。只能是允许这个类本身进行访问了,连子类也不可以,这类属性在运行时属性名会加上单下划线和类名。

总结

本文介绍了Python中class的一些基本点:

  • 实例数据属性和类数据属性的区别,以及属性隐藏
  • 实例方法,类方法和静态方法直接的区别
  • Python中通过"_"和"__"实现的访问控制
时间: 2024-10-11 13:23:06

Python中的类(上)的相关文章

python进阶三(面向对象编程基础)【3-1 python中创建类属型】

python中创建类属性 类是模板,而实例则是根据类创建的对象. 绑定在一个实例上的属性不会影响其他实例,但是,类本身也是一个对象,如果在类上绑定一个属性,则所有实例都可以访问类的属性,并且,所有实例访问的类属性都是同一个!也就是说,实例属性每个实例各自拥有,互相独立,而类属性有且只有一份. 定义类属性可以直接在 class 中定义: 1 class Person(object): 2 address = 'Earth' 3 def __init__(self, name): 4 self.na

对python中元类的理解

1. 类也是对象 在大多数编程语言中,类就是一组用来描述如何生成一个对象的代码段.在Python中这一点仍然成立: >>> class ObjectCreator(object): - pass - >>> my_object = ObjectCreator() >>> print my_object <__main__.ObjectCreator object at 0x8974f2c> 但是,Python中的类还远不止如此.类同样也是一

使用C语言为python编写动态模块(3)--在C中实现python中的类

楔子 这次我们来介绍python中的类型在C中是如何实现的,我们在C中创建python的int对象,可以使用PyLong_FromLong.创建python的list对象可以使用PyList_New,那么如何在C中构建一个python中的类呢? 对于构建一个类,我们肯定需要以下步骤: 创建一个类扩展 添加类的参数 添加类的方法 添加类的属性,比如可以设置.获取属性 添加类的继承 解决类的循环引用导致的内存泄露问题和自定义垃圾回收 前面几个步骤是必须的,但是容易把最后一个问题给忽略掉.我们在pyt

关于Python中的类普通继承与super函数继承

关于Python中的类普通继承与super函数继承 1.super只能用于新式类 2.多重继承super可以保公共父类仅被执行一次 一.首先看下普通继承的写法 二.再看看super继承的写法 参考链接:http://blog.csdn.net/lqhbupt/article/details/19631991

python 中的类

python 中的类内容概述类的概念: 类是一组方法与属性的抽象集. 属性 实例变量(每个实例内存中) 类变量(类内存中) 私有属性 __var 方法 构造方法 析构函数(默认就有,代码为空,写了则相当于重构它) 其他方法 对象(object):类的实例(实例化一个类之后得到的对象) 类的特性: 封装: 把一些功能的实现细节不对外暴露 继承: 继承顺序:(先覆盖.再继承.再添加) 继承:代码复用 继承方式: 单继承 多继承 2.7 经典类 深度优先 新式类 广度优先 3.x 均广度优先 多态:

简述Python中的类与对象

Python中的类 类的定义 示例: class Person: country = "China" def __init__(self, name, age): self.name = name self.age = age def speak(self, word): print(word) 其中 country 是类属性,即 Person类 的静态属性,speak() 为 Person类的函数属性,即类的动态属性~ 类的实例化 对上述示例的类进行实例化: >>>

python中新式类和经典类

python中的类分为新式类和经典类,具体有什么区别呢?简单的说, 1.新式类都从object继承,经典类不需要. Python 2.x中默认都是经典类,只有显式继承了object才是新式类 Python 3.x中默认都是新式类,不必显式的继承object 2.经典类继承深度优先,新式类继承广度优先. 在多重继承关系下,子类的实例对象想要调用父类的方法,向上寻找时的顺序. 3.新式类相同父类只执行一次构造函数,经典类重复执行多次. class A: def __init__(self): pri

Python中的类和方法使用举例

1.类的属性 成员变量对象的创建创建对象的过程称之为实例化,当一个对象被创建后,包含三个方面的特性对象聚丙属性和方法,句柄用于区分不同的对象,对象的属性和方法,与类中的成员变量和成员函数对应,obj = MyClass()创建类的一个实例,扩号对象,通过对象来调用方法和属性 类的属性 类的属性按使用范围分为公有属性和私有属性类的属性范围,取决于属性的名称,共有属性---在内中和内外都能够调用的属性私有属性---不能在内外贝类以外函数调用定义方式:以""双下划线开始的成员变量就是私有属性

Python中的类(下)

本文将介绍一下类的构造函数和初始化函数,以及如何通过"魔术方法"定制一个类. 类构造和初始化 在前面的文章中,经常使用初始化函数"__init__",下面看看"__init__"和"__new__"的联系和差别. 下面先通过一段代码看看这两个方法的调用顺序: class A(object): def __init__(self,*args, **kwargs): print "init %s" %self.