BZOJ3437:小P的牧场(DP+斜率优化)

小P的牧场
【题目描述】
背景:小P 是个特么喜欢玩MC 的孩纸。。。
小P 在MC 里有n 个牧场,自西向东呈一字形排列(自西向东用1…n 编号),于是他就烦恼了:为了控制这n 个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧场一直到它西边第一个控制站的所有牧场(它西边第一个控制站所在的牧场不被控制)(如果它西边不存在控制站,那么它控制西边所有的牧场),每个牧场被控制都需要一定的花费(毕竟在控制站到牧场间修建道路是需要资源的嘛~),而且该花费等于它到控制它的控制站之间的牧场数目(不包括自身,但包括控制站所在牧场)乘上该牧场的放养量,在第i 个牧场建立控制站的花费是ai,每个牧场i 的放养量是bi,理所当然,小P 需要总花费最小,但是小P的智商有点不够用了,所以这个最小总花费就由你来算出啦。
【输入格式】
第一行一个整数n 表示牧场数目
第二行包括n 个整数,第i 个整数表示ai
第三行包括n 个整数,第i 个整数表示bi
【输出格式】
只有一行,包括一个整数,表示最小花费
【样例输入】
4
2 4 2 4
3 1 4 2
【样例输出】
9
【样例解释】
选取牧场1,3,4 建立控制站,最小费用为2+( 2 + 1 * 1 ) + 4 = 9。
数据范围与约定
对于10%的数据,1 <= n <= 10
对于30%的数据,1 <= n <= 1000
对于100%的数据,1 <= n <= 1000000 , 0 < ai,bi <= 10000

分析:

经过思考可以得到这样一个式子

f[i,1]表示在第i个牧场建站且右边的牧场已全部控制的最小费用,f[i,0]表示第i个牧场未建站而从i到n的牧场都被控制的最小代价,倒着来DP。

f[i,1]:=min(f[i+1,1],f[i+1,0])+a[i];

f[i,0]:=min(f[j,1]+t); (i:=n..1,i<j<n)

其中t表示i..j-1的牧场被j控制的总代价,在动规循环同时求出,这样要用三层循环,显然这个效率并不好。

对DP进行改进,将牧场排列倒过来,同时改进f,f[i]表示在第i个牧场建站并之前的牧场都被控制的最小总代价,我们增加一个牧场n+1,令其建站和被控制代价为0。则有:

f[i]:=min(f[j]+t)+a[i];(i:=1..n+1,1<=j<i) 其中t表示j+1..i-1的牧场都被控制的总代价,求t可以采用一个很好地方法:

令s[i]表示1..i的a数组元素和,u[i]表示1..i的s数组元素和:

t=s[i-1]-s[j]+s[i-1]-s[j+1]+...+s[i-1]-s[i-2]

=s[i-1]*(i-j-1)-(s[j]+s[j+1]+s[j+2]+..+s[i-2])

=s[i-1]*(i-j-1)-(u[i-2]-u[j-1])

所以DP式子出来了:

f[i]:=min(f[j]+s[i-1]*(i-j-1)-(u[i-2]-u[j-1]))+a[i];

时间效率为O(n^2),这样还不够,于是进行斜率优化,要注意向队列添加元素时队内最少元素数目不低于2个,我就在这里处理错了导致之前一直没AC。

代码:

program pasture;
var
  f:array[0..1000000]of int64;
  a,b,u,s,q:array[0..1000001]of int64;
  n,m,t,k,h,j:int64; i:longint;
function min(x,y:int64):int64;
begin
  if x<y then min:=x else min:=y;
end;
function cal1(x,y:longint):int64;
begin
  exit(f[x]-f[y]+u[x-1]-u[y-1]);
end;
function cal2(x,y:longint):int64;
begin
  exit(x-y);
end;
begin
  readln(n);
  for i:=n downto 1 do
   read(a[i]);
  readln;
  for i:=n downto 1 do
   read(b[i]);
  for i:=1 to n do
    s[i]:=s[i-1]+b[i];
  for i:=1 to n do
   u[i]:=u[i-1]+s[i];
  f[1]:=a[1]; q[1]:=1; h:=1; t:=1;
   for i:=2 to n+1 do
    begin
      while (h<t)and(cal1(q[h+1],q[h])<s[i-1]*cal2(q[h+1],q[h])) do inc(h);
      j:=q[h];
      f[i]:=f[j]+s[i-1]*(i-j-1)-(u[i-2]-u[j-1])+a[i];
      while (t-h>=1)and(cal1(i,q[t])*cal2(q[t],q[t-1])<=cal1(q[t],q[t-1])*cal2(i,q[t])) do dec(t);
      t:=t+1; q[t]:=i;
    end;
  writeln(f[n+1]);
end.

时间: 2024-10-05 12:27:47

BZOJ3437:小P的牧场(DP+斜率优化)的相关文章

bzoj3437小P的牧场

bzoj3437小P的牧场 题意: n个牧场,在每个牧场见控制站的花费为ai,在该处建控制站能控制从此处到左边第一个控制站(或边界)之间的牧场.一个牧场被控制的花费等于它到控制它的控制站之间的牧场数目(不包括自身,但包括控制站所在牧场)乘上该牧场的放养量.求最小费用. 题解: 推公式: f[i]=f[j]+sigma(k,j+1,i)((i-k)*b[k])+a[i] =f[j]+sigma(k,j+1,i)(i*b[k]-k*b[k])+a[i] =f[j]+sigma(k,j+1,i)(i*

【BZOJ-4518】征途 DP + 斜率优化

4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 230  Solved: 156[Submit][Status][Discuss] Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜.所以,一段路必须在同一天中走完. Pine希望每一天走的路长度尽可能相近,所以他

学渣乱搞系列之dp斜率优化

学渣乱搞系列之dp斜率优化 By 狂徒归来 貌似dp的斜率优化一直很难搞啊,尤其是像我这种数学很挫的学渣,压根不懂什么凸包,什么上凸下凸的,哎...说多了都是泪,跟wdd讨论了下,得出一些结论.本文很大部分参考了大神Accept的文章,不过此神貌似早已绝迹江湖,这篇文章写得好,也写得很差,前半部分叙述得很好,可是关键,关键部分说得很乱,有些许错误,很多大神都进行了评论指出,但是大神Accept貌似没有修改的意思,故重新总结下,以便自己以后查阅和复习啊. 下面看一个例题Print Article.

BZOJ 1096: [ZJOI2007]仓库建设(DP+斜率优化)

[ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏.由于地形的不同,在不同工厂建立仓库的费用可能是不同的.第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库的费用是Ci.对于没有建立仓库的工厂,其

Covered Walkway(HDU4258,dp斜率优化)

Covered Walkway Time Limit: 30000/10000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Problem Description Your university wants to build a new walkway, and they want at least part of it to be covered. There are certain points which

【BZOJ-1010】玩具装箱toy DP + 斜率优化

1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8432  Solved: 3338[Submit][Status][Discuss] Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P

DP 斜率优化题目/决策单调性题目

斜率优化 冬令营讲到了dp斜率优化后瞎写了一些斜率优化,因为毕竟上次写是老早以前了,当时对这个并不是很理解,现在有一点数学基础,稍微好一点了. 瞎找的斜率优化题,可能有点太水了,我这种这么菜的人竟然都切得那么快.可能难度不够,因为有个y坐标不单调要套个平衡树的我是真不会,这个嘛以后再说了. 1.hdu3507 Print Article 给定非负数列,划成若干块,每块价值是左边那玩意儿.求总权值min. 这个自己写写就可以搞出来了吧,现在看真心不难,除非数值有负的..那个要平衡树,现在写不动.

BZOJ3437 小P的牧场(斜率优化dp)

题目link:http://www.lydsy.com/JudgeOnline/problem.php?id=3437; 略略读一下题,发现这题是一道dp 有一些牧场: 1 2 3 4 5 6 7 8 9 10 其中编号大的可以管住编号小的. a[i]表示建站费用 b[i]表示养殖奶牛数目 dp方程大概就出来了 f[i]=min(f[j]+cost(j+1,i)) (0<j<i); 可是有些问题需要O(1)计算cost(j+1,i); 怎么办呢? 于是我想了一个很不清真的计算方法 开了两个数组

bzoj3437小P的牧场 斜率优化dp

3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1542  Solved: 849[Submit][Status][Discuss] Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧场一直到它西边第一个控制站的所有牧场(它西边第一个控制站所在的牧场不被