机器学习和深度学习学习资料

比较全面的收集了机器学习的介绍文章,从感知机、神经网络、决策树、SVM、Adaboost到随机森林、Deep Learning。

探索推荐引擎内部的秘密,第 3 部分: 深度推荐引擎相关算法

  • 聚类

3

时间: 2024-10-10 05:05:06

机器学习和深度学习学习资料的相关文章

关于机器学习和深度学习的资料

声明:转来的,原文出处:http://blog.csdn.net/achaoluo007/article/details/43564321 编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.而且原文也会不定期的更新,望看到文章的朋友能够学到更多. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. &

机器学习、深度学习的相关资料

下面对查阅学习机器学习.深度学习过程中搜集到的一些比较好的资料整理如下,与大家分享,如果有朋友有更好的资料,也请告诉我,谢谢大家 课程资料 coursera上的台大<机器学习技法> coursera上的台大<机器学习基石> 多伦多大学的<Neural Networks for Machine Learning>

近200篇机器学习&amp;amp;深度学习资料分享

编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.并且原文也会不定期的更新.望看到文章的朋友能够学到很多其它. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍非常全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室

资料汇总:Python语言与机器学习以及深度学习

不知不觉收藏了好多链接,筛选一下,放在这里吧~ 关于Python学习: <Learn Python the Hard Way>该书对应有英文版:网络教程 喜欢中文教程的有廖雪峰的官方网站:廖雪峰 (此链接为Python2.7版教程) 一个很好的学习pandas数据分析的:ipython-notebook 一个超级强大的github学习资源:awesome-pyhton 官方文档:Python-2.7.12 HackerRank上的Python模块的在线题库:Python 关于机器学习或深度学习

机器学习和深度学习资料合集

机器学习和深度学习资料合集 注:机器学习资料篇目一共500条,篇目二开始更新 希望转载的朋友,你可以不用联系我.但是一定要保留原文链接,因为这个项目还在继续也在不定期更新.希望看到文章的朋友能够学到更多.此外:某些资料在中国访问需要梯子. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in

重磅福利!!机器学习和深度学习学习资料合集

比較全面的收集了机器学习的介绍文章,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <机器学习经典论文/survey合集> 介绍:看题目你已经知道了是什么内容,没错. 里面有非常多经典的机器学习论文值得细致与重复的阅读. <Brief History of Machine Learning>2 介绍:这是一篇介绍机器学习历史的文章.介绍非常全面.从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning.

[转]机器学习和深度学习资料汇总【01】

本文转自:http://blog.csdn.net/sinat_34707539/article/details/52105681 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen

[转载]机器学习&amp;深度学习经典资料汇总,全到让人震惊

自学成才秘籍!机器学习&深度学习经典资料汇总 转自:中国大数据: http://www.thebigdata.cn/JiShuBoKe/13299.html [日期:2015-01-27] 来源:亚马逊  作者: [字体:大 中 小] 小编都深深的震惊了,到底是谁那么好整理了那么多干货性的书籍.小编对此人表示崇高的敬意,小编不是文章的生产者,只是文章的搬运工. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感

机器学习与深度学习资料

<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80

机器学习、深度学习的理论与实战入门建议整理

引言 拿到这份文档时想必你的脑海中一直萦绕着这么一个问题,"机器学习/深度学习要怎么学呢?(怎么入门,又怎么进一步掌握?)".关于这个问题其实并没有一个标准答案,有的人可能适合自底向上的学,也就是先从理论和数学开始,然后是算法实现,最后再通过一些项目去解决生活中的实际问题:有的人则可能适合自顶向下的学,也就是在弄清楚什么是机器学习及为什么学机器学习后,先确定一个系统性的用机器学习来解决实际问题的程序,然后找到一个合适的工具,接着再在各种数据集上做练习以不断加强自己的实践能力与巩固对算法