ictclas,ansj,结巴分词,StanfordNLP中文分词以及所用词性标注集

NLPIR(ICTCLAS),参见java实现NLPIR(ICTCLAS)分词:http://www.bubuko.com/infodetail-665665.html,词性标注使用北大词性标注集。在Linux系统中的使用方法:http://jingyan.baidu.com/article/9158e0004251b4a2541228e5.html

ansj分词,非常好用,ansj-seg把分词、词性标注、新词发现、关键词提取这些功能的接口,都抽取出来了,方便我们选择其中一部分使用,这点尤其在处理大数据量的时候至关重要。使用新版的北大词性标注集,略有不同。ansj的源码地

址:http://nlpchina.github.io/ansj_seg/。ansj分词器的配置:http://blog.csdn.net/zhongkeli/article/details/17722065(可直接在eclipse中使用)。

StanfordNLP中文分词使用CTB(Chinese Tree Bank)中文树库标注词性;结巴分词用北大词性标注集

时间: 2024-10-16 14:11:41

ictclas,ansj,结巴分词,StanfordNLP中文分词以及所用词性标注集的相关文章

中文分词技术(中文分词原理)

一.       为什么要进行中文分词? 词是最小的能够独立活动的有意义的语言成分,英文单词之间是以空格作为自然分界符的,而汉语是以字为基本的书写单位,词语之间没有明显的区分标记,因此,中文词语分析是中文信息处理的基础与关键. Lucene中对中文的处理是基于自动切分的单字切分,或者二元切分.除此之外,还有最大切分(包括向前.向后.以及前后相结合).最少切分.全切分等等. 二.       中文分词技术的分类 我们讨论的分词算法可分为三大类:基于字典.词库匹配的分词方法:基于词频度统计的分词方法

python中文分词,使用结巴分词对python进行分词

在采集美女站时,需要对关键词进行分词,最终采用的是python的结巴分词方法. 中文分词是中文文本处理的一个基础性工作,结巴分词利用进行中文分词.其基本实现原理有三点: 基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG) 采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合 对于未登录词,采用了基于汉字成词能力的HMM模型,使用了Viterbi算法 安装(Linux环境) 下载工具包,解压后进入目录下,运行:python setup.py i

NLP︱中文分词技术小结、几大分词引擎的介绍与比较

笔者想说:觉得英文与中文分词有很大的区别,毕竟中文的表达方式跟英语有很大区别,而且语言组合形式丰富,如果把国外的内容强行搬过来用,不一样是最好的.所以这边看到有几家大牛都在中文分词以及NLP上越走越远.哈工大以及北大的张华平教授(NLPIR)的研究成果非常棒! 但是商业应用的过程中存在的以下的问题: 1.是否先利用开源的分词平台进行分词后,再自己写一些算法进行未登录词.歧义词的识别? 2.或者直接调用下文介绍的分词引擎来进行分词呢?缴费使用固然很棒,但是是否值得? ---------------

11款开放中文分词引擎大比拼

在逐渐步入DT(Data Technology)时代的今天,自然语义分析技术越发不可或缺. 对于我们每天打交道的中文来说,并没有类似英文空格的边界标志.而理解句子所包括的词语,则是理解汉语语句的第一步.汉语自己主动分词的任务,通俗地说.就是要由机器在文本中的词与词之间自己主动加上空格. 一提到自己主动分词,一般会遇到两种比較典型的质疑.一种质疑是来自外行人的:这件事看上去平庸之极,好像一点儿也不"fancy",会有什么用呢?还有一种质疑则是来自业内:自己主动分词研究已经进行了数年,而网

【Lucene】Apache Lucene全文检索引擎架构之中文分词和高亮显示

前面总结的都是使用Lucene的标准分词器,这是针对英文的,但是中文的话就不顶用了,因为中文的语汇与英文是不同的,所以一般我们开发的时候,有中文的话肯定要使用中文分词了,这一篇博文主要介绍一下如何使用smartcn中文分词器以及对结果的高亮显示. 1. 中文分词 使用中文分词的话,首先到添加中文分词的jar包. <!-- lucene中文分词器 --> <dependency> <groupId>org.apache.lucene</groupId> <

中文分词与搜索引擎

看到题目就知道我要说什么了,这个话题好像已经被讨论过n次了,看雅虎搜索blog上在06年就有过专题系列文章,地址为:http://ysearchblog.cn/2006/07/post_16.html,文中详细的介绍了有关中文分词的意义,算法,跟搜索引擎的关系等等.个人认为文章质量非常不错.其实我所写的也不外乎这些东西,可我为什么还要写呢?是因为我花了将近一周的时间来理解中文分词,收集有关资料,为了不让努力白费,我还是总结一下吧. 一.为什么要中文分词? 对啊,为何要分词,不分词行不行?要讨论这

中文分词——正向最大匹配法

中文分词应用很广泛,网上也有很多开源项目.我在这里主要讲一下中文分词里面算法的简单实现,废话不多说了,现在先上代码 package com; import java.util.ArrayList; import java.util.List; public class Segmentation1 { private List<String> dictionary = new ArrayList<String>(); private String request = "北京

IKAnalyzer 中文分词器

IK Analyzer 是一个开源的,基于java语言开发的轻量级的中文分词工具包.可与lucene配合使用. IK Analyzer是一个结合词典分词和文法分词的中文分词开源工具包.它使用了全新的正向迭代最细粒度切分算法. 项目地址:http://www.oschina.net/p/ikanalyzer/ 下载页面:http://git.oschina.net/wltea/IK-Analyzer-2012FF 示例代码: 该代码的工程结构:下图

Lucene使用IKAnalyzer中文分词笔记

本文主要讲解IKAnalyzer(以下简称'IK')在Lucene中的具体使用,关于Lucene和IK分词器的背景及其作用在这里就不再熬述.不得不感叹下Lucene版本变更的快速,如今最新已经到了4.9.0,相信任何技术的发展壮大都不可避免有这一过程.本文使用的是Lucene4.0,IKAnalyzer使用的是2012FF版. Lucene下载请移步官网,IK下载地址如下: http://code.google.com/p/ik-analyzer/downloads/list IK下载完成够拷贝