CRC-16的原理和实现

CRC的全称为Cyclic Redundancy Check,中文名称为循环冗余校验。它是一类重要的线性分组码,编码和解码方法简单,检错和纠错能力强,在通信领域广泛地用于实现差错控制。实际上,除 数据通信外,CRC在其它很多领域也是大有用武之地的。例如我们读软盘上的文件,以及解压一个ZIP文件时,偶尔会碰到“Bad CRC”错误,由此它在数据存储方面的应用可略见一斑。

差错控制理论是在代数理论基础上建立起来的。这里我们着眼于介绍CRC的算法与实现,对原理只能捎带说明一下。若需要进一步了解线性码、分组码、循环码、纠错编码等方面的原理,可以阅读有关资料。

利用CRC进行检错的过程可简单描述为:在发送端根据要传送的k位二进制码序列,以一定的规则产生一个校验用的r位监督 码(CRC码),附在原始信息后边,构成一个新的二进制码序列数共k+r位,然后发送出去。在接收端,根据信息码和CRC码之间所遵循的规则进行检验,以 确定传送中是否出错。这个规则,在差错控制理论中称为“生成多项式”。

 

1 代数学的一般性算法

在代数编码理论中,将一个码组表示为一个多项式,码组中各码元当作多项式的系数。例如 1100101 表示为
1·x6+1·x5+0·x4+0·x3+1·x2+0·x+1,即 x6+x5+x2+1。

设编码前的原始信息多项式为P(x),P(x)的最高幂次加1等于k;生成多项式为G(x),G(x)的最高幂次等于r;CRC多项式为R(x);编码后的带CRC的信息多项式为T(x)。

发送方编码方法:将P(x)乘以xr(即对应的二进制码序列左移r位),再除以G(x),所得余式即为R(x)。用公式表示为
T(x)=xrP(x)+R(x)

接收方解码方法:将T(x)除以G(x),如果余数为0,则说明传输中无错误发生,否则说明传输有误。

举例来说,设信息码为1100,生成多项式为1011,即P(x)=x3+x2,G(x)=x3+x+1,计算CRC的过程为

      xrP(x)     x3(x3+x2)     x6+x5                    x     -------- = ---------- = -------- = (x3+x2+x) + --------       G(x)       x3+x+1      x3+x+1                 x3+x+1

即 R(x)=x。注意到G(x)最高幂次r=3,得出CRC为010。

如果用竖式除法,计算过程为

               1110            -------         1011 /1100000     (1100左移3位)            1011            ----             1110             1011             -----              1010              1011              -----               0010               0000               ----                010

因此,T(x)=(x6+x5)+(x)=x6+x5+x, 即 1100000+010=1100010

如果传输无误,

       T(x)     x6+x5+x      ------ = --------- = x3+x2+x,       G(x)     x3+x+1

无余式。回头看一下上面的竖式除法,如果被除数是1100010,显然在商第三个1时,就能除尽。

上述推算过程,有助于我们理解CRC的概念。但直接编程来实现上面的算法,不仅繁琐,效率也不高。实际上在工程中不会直接这样去计算和验证CRC。

下表中列出了一些见于标准的CRC资料:


名称


生成多项式


简记式*


应用举例


CRC-4


x4+x+1


ITU G.704


CRC-12


x12+x11+x3+x+1


CRC-16


x16+x12+x2+1


1005


IBM SDLC


CRC-ITU**


x16+x12+x5+1


1021


ISO HDLC, ITU X.25, V.34/V.41/V.42, PPP-FCS


CRC-32


x32+x26+x23+...+x2+x+1


04C11DB7


ZIP, RAR, IEEE 802 LAN/FDDI, IEEE 1394, PPP-FCS


CRC-32c


x32+x28+x27+...+x8+x6+1


1EDC6F41


SCTP

    *  生成多项式的最高幂次项系数是固定的1,故在简记式中,将最高的1统一去掉了,如04C11DB7实际上是104C11DB7。    ** 前称CRC-CCITT。ITU的前身是CCITT。

4.CRC算法的实现
---------------
要用程序实现CRC算法,考虑对第2节的长除法做一下变换,依然是M = 11100110,G = 1011,
其系数r为3。
                        
                 11001100                  
         ------------------------              
1011 )11100110000                 
          1011.......                       
          ----.......                          
           1010......                     
           1011......       
           ----......                 
                 1110...                  
                 1011...                     
                 ------...                      
                   1010..                   
                   1011..                    
                   -------                       
                     100  <---校验码       
                           
程序可以如下实现:
    1)将Mx^r的前r位放入一个长度为r的寄存器;
    2)如果寄存器的首位为1,将寄存器左移1位(将Mx^r剩下部分的MSB移入寄存器的LSB),
      再与G的后r位异或,否则仅将寄存器左移1位(将Mx^r剩下部分的MSB移入寄存器的LSB);
    3)重复第2步,直到M全部Mx^r移入寄存器;
    4)寄存器中的值则为校验码。

基于以上算法,我们可以看一下上面例子的程序计算过程:(r=3)

首先,111 00110000前三位进入寄存器,即111

这时寄存器首位为1,执行第2步,移位成110 0110000,这时寄存器中为前三位110,将其与011(生成多项式后三位)异或,得101 0110000.

然后继续第2步,101首位为1,移位010 110000,然后010与011异或,得  001 110000
前面两个0,连续以为2次且不用计算异或,得111 0000,接着移位110 000,异或得101 000
       第一位为1,移位得010 00,前三位异或得001 00

最后因为前面两个0,直接移位两次后得寄存器中的内容100,这时Mx^r位的所有内容都移入寄存器,运算结束,记得检验码为100。(关键先判断首位是否为1,然后移位,然后计算)

111 00110000移位->1 110 0110000
                                                011
                                                101 0110000  -->101第一位为1,移位且计算
                                                1 010 110000
                                                   011 
                                                   001 110000-->001第一位第二位均为0,移位2次
                                                   00 111 0000-->111第一位为1,移位且计算
                                                        1 110 000
                                                           011
                                                           101 000-->101第一位为1,移位且计算
                                                           1 010 00
                                                              011
                                                              001 00-->移位2次得100

用CRC16-CCITT的生成多项式0x1021,其C代码(本文所有代码假定系统为32位,且都在VC6上编译通过)如下:

unsigned short do_crc(unsigned char *message, unsigned int len)
{
    int i, j;
    unsigned short crc_reg;
        
    crc_reg = (message[0] << 8) + message[1];
    for (i = 0; i < len; i++) 
    {
        if (i < len - 2)
            for (j = 0; j <= 7; j++) 
            { 
                if ((short)crc_reg < 0)
                    crc_reg = ((crc_reg << 1) + (message[i + 2] >> (7 - i))) ^ 0x1021;
                else 
                    crc_reg = (crc_reg << 1) + (message[i + 2] >> (7 - i));      
            }
         else
            for (j = 0; j <= 7; j++) 
            { 
                if ((short)crc_reg < 0)
                    crc_reg = (crc_reg << 1) ^ 0x1021;
                else 
                    crc_reg <<= 1;             
            }         
    }
    return crc_reg;
}

显然,每次内循环的行为取决于寄存器首位。由于异或运算满足交换率和结合律,以及与0异或无影响,消息可以不移入寄存器,而在每次内循环的时候,寄存器首位再与对应的消息位异或。改进的代码如下:

unsigned short do_crc(unsigned char *message, unsigned int len) 
{
    int i, j;
    unsigned short crc_reg = 0;
    unsigned short current;
        
    for (i = 0; i < len; i++) 
    {
        current = message[i] << 8;
        for (j = 0; j < 8; j++) 
        { 
            if ((short)(crc_reg ^ current) < 0)
                crc_reg = (crc_reg << 1) ^ 0x1021;
            else 
                crc_reg <<= 1; 
            current <<= 1;            
        }
    }
    return crc_reg;
}

以上的讨论中,消息的每个字节都是先传输MSB,CRC16-CCITT标准却是按照先传输LSB,消息右移进寄存器来计算的。只需将代码改成判断寄存器的LSB,将0x1021按位颠倒后(0x8408)与寄存器异或即可,如下所示:

unsigned short do_crc(unsigned char *message, unsigned int len) 
{
    int i, j;
    unsigned short crc_reg = 0;
    unsigned short current;
        
    for (i = 0; i < len; i++) 
    {
        current = message[i];
        for (j = 0; j < 8; j++) 
        { 
            if ((crc_reg ^ current) & 0x0001)
                crc_reg = (crc_reg >> 1) ^ 0x8408;
            else 
                crc_reg >>= 1; 
            current >>= 1;            
        }
    }
    return crc_reg;
}

该算法使用了两层循环,对消息逐位进行处理,这样效率是很低的。为了提高时间效率,通常的思想是以空间换时间。考虑到内循环只与当前的消息字节和crc_reg的低字节有关,对该算法做以下等效转换:

unsigned short do_crc(unsigned char *message, unsigned int len) 
{
    int i, j;
    unsigned short crc_reg = 0;
    unsigned char  index;
    unsigned short to_xor;
       
    for (i = 0; i < len; i++) 
    {
        index = (crc_reg ^ message[i]) & 0xff; 
        to_xor = index;       
        for (j = 0; j < 8; j++) 
        { 
            if (to_xor & 0x0001)
                to_xor = (to_xor >> 1) ^ 0x8408;
            else 
                to_xor >>= 1;           
        }
        crc_reg = (crc_reg >> 8) ^ to_xor;
    }
    return crc_reg;
}

现在内循环只与index相关了,可以事先以数组形式生成一个表crc16_ccitt_table,使得to_xor = crc16_ccitt_table[index],于是可以简化为:

unsigned short do_crc(unsigned char *message, unsigned int len) 
{
    unsigned short crc_reg = 0; 
          
    while (len--) 
        crc_reg = (crc_reg >> 8) ^ crc16_ccitt_table[(crc_reg ^ *message++) & 0xff];
        
    return crc_reg;
}

crc16_ccitt_table通过以下代码生成:

int main()
{
    unsigned char index = 0;
    unsigned short to_xor;
    int i;

printf("unsigned short crc16_ccitt_table[256] =\n{");
    while (1) 
    {
        if (!(index % 8))
            printf("\n");
        
        to_xor = index;       
        for (i = 0; i < 8; i++) 
        { 
            if (to_xor & 0x0001)
                to_xor = (to_xor >> 1) ^ 0x8408;
            else 
                to_xor >>= 1;           
        }            
        printf("0x%04x", to_xor);
        
        if (index == 255)
        {
            printf("\n");
            break;
        }
        else
        {
            printf(", ");
            index++;
        }
    }
    printf("};");
    return 0;
}

生成的表如下:

unsigned short crc16_ccitt_table[256] =
{
0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf,
0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7,
0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e,
0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876,
0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd,
0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5,
0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c,
0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974,
0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb,
0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3,
0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a,
0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72,
0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9,
0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1,
0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738,
0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70,
0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7,
0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff,
0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036,
0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e,
0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5,
0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd,
0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134,
0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c,
0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3,
0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb,
0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232,
0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a,
0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1,
0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9,
0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330,
0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78
};

这样对于消息unsigned char message[len],校验码为:
    unsigned short code = do_crc(message, len);
并且按以下方式发送出去:
    message[len] = code & 0x00ff;
    message[len + 1] = (code >> 8) & 0x00ff; 
    
接收端对收到的len + 2字节执行do_crc,如果没有差错发生则结果应为0。

在一些传输协议中,发送端并不指出消息长度,而是采用结束标志,考虑以下几种差错:
    1)在消息之前,增加1个或多个0字节;
    2)消息以1个或多个连续的0字节开始,丢掉1个或多个0;
    3)在消息(包括校验码)之后,增加1个或多个0字节; 
    4)消息(包括校验码)以1个或多个连续的0字节结尾,丢掉1个或多个0; 
    
显然,这几种差错都检测不出来,其原因就是如果寄存器值为0,处理0消息字节(或位),寄存器值不变。为了解决前2个问题,只需寄存器的初值非0即可,对do_crc作以下改进:
 
unsigned short do_crc(unsigned short reg_init, unsigned char *message, unsigned int len) 
{
    unsigned short crc_reg = reg_init; 
          
    while (len--) 
        crc_reg = (crc_reg >> 8) ^ crc16_ccitt_table[(crc_reg ^ *message++) & 0xff];
        
    return crc_reg;
}

在CRC16-CCITT标准中reg_init = 0xffff,为了解决后2个问题,在CRC16-CCITT标准中将计算出的校验码与0xffff进行异或,即:
    unsigned short code = do_crc(0xffff, message, len);
    code ^= 0xffff;
    message[len] = code & 0x00ff;
    message[len + 1] = (code >> 8) & 0x00ff;   
    
显然,现在接收端对收到的所有字节执行do_crc,如果没有差错发生则结果应为某一常值GOOD_CRC。其满足以下关系:
    unsigned char p[]= {0xff, 0xff}; 
    GOOD_CRC = do_crc(0, p, 2); 
其结果为GOOD_CRC = 0xf0b8。

在同一程序中验证如下(放在main函数中可试验):

unsigned char p[]= {0xa0,0xb0,0xff, 0xff};
    unsigned short crc;        
     crc= do_crc(0xffff, p, 2);  //计算前两位的CRC码
    crc^=0xffff;     //对其取反
    p[2]=crc&0x00ff;   //将计算的CRC码加到信息序列后面
    p[3]=crc>>8&0x00ff;
    printf("p[2]=%x,p3=%x\n",p[2],p[3]);
    crc=do_crc(0xffff,p,4);   //对信息码+CRC码共同计算得出CRC=0xf0b8
    printf("crc is %x\n",crc);
假设发送的信息是p[0],p[1];低位先发,对其计算的CRC加到信息码后面

然后对信息码+CRC码共同计算CRC值,此时应该是常数0xf0b8。不管信息码如何变化,内容和长度都可变,只要把计算的CRC码加进去一起计算CRC,就应该是得该常数GOOD_CRC。

参考文献
--------
[1] Ross N. Williams,"A PAINLESS GUIDE TO CRC ERROR DETECTION ALGORITHMS",Version 3,
    http://www.ross.net/crc/crcpaper.html,August 1993
[2] Simpson, W., Editor, "PPP in HDLC Framing",RFC 1549, December 1993
[3] P. E. Boudreau,W. C. Bergman and D. R. lrvin,"Performance of a cyclic redundancy  check and its interaction with a data scrambler",IBM J. RES. DEVELOP.,VOL.38    NO.6,November 1994

时间: 2024-12-07 20:30:02

CRC-16的原理和实现的相关文章

CRC的校验原理

http://blog.163.com/[email protected]/blog/static/107495394201075114028606/  原文地址 CRC的校验原理 2010-08-05 11:40:28|  分类: 计算机|举报|字号 订阅 下载LOFTER我的照片书  | 一.基本原理 CRC检验原理实际上就是在一个p位二进制数据序列之后附加一个r位二进制检验码(序列),从而构成一个总长为n=p+r位的二进制序列:附加在数据序列之后的这个检验码与数据序列的内容之间存在着某种特

CRC检错技术原理

一.题外话 说来惭愧,一开始是考虑写关于CRC检错技术更深层次数学原理的,然而在翻看<Basic Algebra>后,我果断放弃了这种不切实际的想法.个人觉得不是因为本人数学水平差或者能力差,而是研究生教材知识概念具有一定的连贯性,需要花大量时间研读.不过呢,我还是找到一本适合了解CRC技术的著作<纠错码的代数理论>---冯克勤,对数学感兴趣的朋友也可以在业余时间品读一下全书. 用国内搜索引擎搜索关于CRC检错技术的文章或者博客,内容也基本都是千篇一律,基本都是介绍如何模2运算.写

CRC校验码原理、实例、手动计算

CRC16实现代码 思路:取一个字符(8bit),逐位检查该字符,如果为1,crc^crc_mul;同时,如果原本crc最高位是1,那么crc^crc_mul后左移1位,否则只是左移一位.计算完一个字符后,装入下一个字符. #include<stdio.h> #define crc_mul 0x1021 //生成多项式 unsigned int cal_crc(unsigned char *ptr, unsigned char len) { unsigned char i; unsigned

CRC(16位)多项式为 X16+X15+X2+1

其对应校验二进制位列为1 1000 0000 0000 0101,可这有17位啊,我怎么和16位信息进行异或啊?是不是不要最高位的1 你没有弄明白crc的意思.这17位后面再添上16个零,然后开始抑或运算.共33位.从前到后运算,一位一位来:当这一位数值是1的时候就取这一位开始往后的16位与校验多项式异或,结果顶替对应的16位数值:当这一位数值是0的时候跳过.前17位算完了(其实也都清零了),剩下16位就是crc校验值了. 假设生成多项式为:G(X)=X16+X15+X2+1,它产生的校验码为多

16. Dubbo原理解析-集群&amp;容错之router路由服务

Router服务路由, 根据路由规则从多个Invoker中选出一个子集AbstractDirectory是所有目录服务实现的上层抽象, 它在list列举出所有invokers后,会在通过Router服务进行路由过滤. Router接口定义 public interface Router extendsComparable<Router> { URL getUrl(); <T> List<Invoker<T>> route(List<Invoker<

CRC原理总结

CRC常用于判断文件在传输过程中文件内容是否被更改以及其他的一些加密算法,在Java中,CRC32 工具类提供给我们使用. 1.CRC校验具体原理如下: 在要发送的数据帧后面附加一个数(这个就是用来校验的验证码,都为二进制序列),生成一个新帧发送给接受端.当然这个附加的数不能是随意的,它要使所生成的新帧与 发送端和接收端共同选定某个数整除(注意:这里不是使用的二进制除法,而是一种称为:模2除法).生成的新帧到达接收端后,再用这个新帧除以(同上)这个选定的数. 因为在发送之前就已经附加了一个数,做

最通俗的CRC校验原理剖析

http://winda.blog.51cto.com/55153/1063951 循环冗余校验码(CRC)的检错能力更强,可以检出多位错误. 1. CRC校验原理 CRC校验原理看起来比较复杂,好难懂,因为大多数书上基本上是以二进制的多项式形式来说明的.其实很简单的问题,其根本思想就是先在要发送的帧后面附加一个数(这个就是用来校验的校验码,但要注意,这里的数也是二进制序列的,下同),生成一个新帧发送给接收端.当然,这个附加的数不是随意的,它要使所生成的新帧能与发送端和接收端共同选定的某个特定数

CRC循环冗余校验码总结(转)

转自 http://blog.csdn.net/u012993936/article/details/45337069 一.CRC简介 先在此说明下什么是CRC:循环冗余码校验 英文名称为Cyclical Redundancy Check,简称CRC,它是利用除法及余数的原理来作错误侦测(Error Detecting)的.实际应用时,发送装置计算出CRC值并随数据一同发送给接收装置,接收装置对收到的数据重新计算CRC并与收到的CRC相比较, 若两个CRC值不同,则说明数据通讯出现错误 那么其实

CRC循环冗余校验码总结

一.CRC简介 先在此说明下什么是CRC:循环冗余码校验 英文名称为Cyclical Redundancy Check,简称CRC,它是利用除法及余数的原理来作错误侦测(Error Detecting)的.实际应用时,发送装置计算出CRC值并随数据一同发送给接收装置,接收装置对收到的数据重新计算CRC并与收到的CRC相比较,若两个CRC值不同,则说明数据通讯出现错误 那么其实CRC有比较多种,比如CRC16.CRC32 ,为什么叫16.32呢.在这里并非与位有和关系.而是由所确定的多项式最高次幂

[转]CRC校验

一.CRC原理. CRC校验的原理非常简单,如下图所示. 其中,生成多项式是利用抽象代数的一些规则推导出来的,而模2加(也就是异或),是对应于有限域的除法. 二.CRC算法. 那么在FPGA当中,也有好几种算法. 1.比特型算法. 这种算法,跟手算的差不多,一个时钟周期处理一个bit,速度慢,但消耗的面积小. 可能你会有疑问,本来是第15位(对应于x^15),再移位就是第16位,怎样把第16位转化成低于16位的数? 利用生成多项式就可以了,crc16 : 1+x^2+x^15+x^16,类似于小