SQL大量数据查询的优化 及 非用like不可时的处理方案

1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num is null

可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:

select id from t where num=0

3.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。

4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:

select id from t where num=10 or num=20

可以这样查询:

select id from t where num=10

union all

select id from t where num=20

5.in 和 not in 也要慎用,否则会导致全表扫描,如:

select id from t where num in(1,2,3)

对于连续的数值,能用 between 就不要用 in 了:

select id from t where num between 1 and 3

6.下面的查询也将导致全表扫描:

select id from t where name like ‘abc%‘

若要提高效率,可以考虑全文检索。

7.如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:

select id from t where [email protected]

可以改为强制查询使用索引:

select id from t with(index(索引名)) where [email protected]

8.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:

select id from t where num/2=100

应改为:

select id from t where num=100*2

9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:

select id from t where substring(name,1,3)=‘abc‘--name以abc开头的id

select id from t where datediff(day,createdate,‘2005-11-30‘)=0--‘2005-11-30’生成的id

应改为:

select id from t where name like ‘abc%‘

select id from t where createdate>=‘2005-11-30‘ and createdate<‘2005-12-1‘

10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。

12.不要写一些没有意义的查询,如需要生成一个空表结构:

select col1,col2 into #t from t where 1=0

这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:

create table #t(...)

13.很多时候用 exists 代替 in 是一个好的选择:

select num from a where num in(select num from b)

用下面的语句替换:

select num from a where exists(select 1 from b where num=a.num)

14.并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。

15.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。

16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。

17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

18.尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

19.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。

20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。

21.避免频繁创建和删除临时表,以减少系统表资源的消耗。

22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使用导出表。

23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。

24.如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。

25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。

26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。

27.与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。

28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。

29.尽量避免大事务操作,提高系统并发能力。

30.尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。

另外,朋友们,如果你非得用Like‘%a%‘ 这样的查询不可的时候

建议你对表进行全文索引,本来like 查询用的时间比如是10秒吧,用了全文索引之后则是2秒,很快。

不过要注意的是,用了全文索引,SQL语句的写法就不再是like‘%a%‘了,而是换了一种写法。这点是很重要的,用的话可以找全文索引的说明即可。

时间: 2024-10-10 00:52:39

SQL大量数据查询的优化 及 非用like不可时的处理方案的相关文章

6、SQL Server 数据查询

一.使用SELECT检索数据 数据查询是SQL语言的中心内容,SELECT 语句的作用是让数据库服务器根据客户要求检索出所需要的信息资料,并按照规定的格式进行整理,返回给客户端. SELECT 语句的基本结构 [WITH<common_tale_expression>] SELECT select_list [INTO new_table_name] [FROM table_source][where search_condition] [GROUP BY group_by_expressio

SQL Server 数据查询 整理

一.使用SELECT检索数据 数据查询是SQL语言的中心内容,SELECT 语句的作用是让数据库服务器根据客户要求检索出所需要的信息资料,并按照规定的格式进行整理,返回给客户端. SELECT 语句的基本结构 [WITH<common_tale_expression>] SELECT select_list [INTO new_table_name] [FROM table_source][where search_condition] [GROUP BY group_by_expressio

web day15 数据库概述,MySQL,SQL语句,数据查询语法DQL

数据库管理系统(DBMS)的概述 1. 什么是DBMS:数据的仓库 > 方便查询 > 可存储的数据量大 > 保证数据的完整.一致 > 安全可靠 2. DBMS的发展:今天主流数据库为关系型数据库管理系统(RDBMS 使用表格存储数据) 3. 常见DBMS:Orcale.MySQL.SQL Server.DB2.Sybase 4. DBMS = 管理程序 + 多个数据库(DB) 5. DB = 多个table(不只是table,但这里先不介绍其他组成部分) 6. table的结构(即

关系数据标准语言SQL之数据查询

数据查询是数据库的核心操作.SQL提供了SELECT语句进行数据查询,该语句具有灵活的使用方式和丰富的功能. 其一般格式为 select [all | distinct]<目标表达式>[,<目标表达式>]… from<表名或视图名>[,<表名或视图名>] | (select语句)(as)<别名> [where<条件表达式>] [group by <列名1>[having <条件表达式>]] [order by

SQL Server 数据查询

一.使用SELECT检索数据 数据查询是SQL语言的中心内容,SELECT 语句的作用是让数据库服务器根据客户要求检索出所需要的信息资料,并按照规定的格式进行整理,返回给客户端. SELECT 语句的基本结构 [WITH] SELECT select_list [INTO new_table_name] [FROM table_source][where search_condition] [GROUP BY group_by_expression] [HAVING search_conditi

SQL server 数据查询功能 上

查询数据 关键字 SELECT <目标列名序列> --需要哪些列 FROM <数据源> ---来自于哪些表 [WHERE <检索条件>] ---根据什么条件 [GROUP BY <分组依据列>] [HAVING <组提取条件>] [ORDER BY <排序依据列>] 基本查询 要查询数据库表的数据,我们使用如下的SQL语句: SELECT * FROM <表名> 假设表名是students,要查询students表的所有行

sql 大数据查询慎用 order by

今天在sql 查询中一个表中查询花了至少20秒时间,数据为620000行,sql语句如下: 测试一:使用order by  单单只是查询0,10行数据,耗时27.888s select a.id,a.county_id,a.county_name,a.town_id,a.town_name,a.village_id,a.village_name,b.province as province_name,b.name as city_name from place a left join city

数据查询读取优化

主要随着数据的增加,用到in的,消耗时间几何增长.由于在前期测试评估不到位,没有查看具体的代码.测试版数据量跟线上的数据差距很大,一般很难看出.对于涉及多表复杂查询的功能需要特别留意. 优化前 线上74.031秒,测试版0.031秒.随着数据量增加而增加. select * from (select "Extent1".*, row_number() OVER(ORDER BY ID desc) as "row_number" from (select * from

SQL server 数据查询功能 中

查询数据 排序 查询结果集通常是按照id排序的,也就是根据主键排序.这也是大部分数据库的做法.如果我们要根据其他条件排序怎么办?可以加上ORDER BY子句. 例如按照成绩从低到高进行排序: SELECT id, name, gender, score FROM students ORDER BY score; 如果要反过来,按照成绩从高到底排序,我们可以加上DESC表示"倒序": SELECT id, name, gender, score FROM students ORDER B