莫队算法及其应用

在写这篇博客之前,我最想做的一件事就是:ORZ莫队%%%%%%%%。

说明:ceil(x)表示x向上取整,sqrt(x)表示对x开算数平方根。

一、莫队算法简介

  莫队算法是一种暴力算法,真的很暴力,但速度很快,属于速度快的暴力。它的基本思想就是分块。关于分块的介绍建议参考hzwer的博客,然后%%%%hzw。莫队算法主要用于解决一类离线查询的问题,和线段树处理的问题是一样的,但处理的是两个不同的方面,当由[L,R]转移到[L’,R’]的时间为O(|L‘-L|+|R‘-R|)时适宜使用莫队算法。这个可以从题目中体会。因为采取的是分块它的复杂度是O(nsqrt(n))。其实质是将询问按照某种顺序排好,这个也应该从题目中去体会,我们参考一道题目。

二、典型例题

  著名例题,小Z的袜子

  链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2038

  题目是中文的,看得懂所以不复制粘贴了。题意也不难理解,稍有组合数学常识的人都可以看出。

三、解法

  因为题目中的组合是C(n,2),所以我们预处理出C2数组,存放2-n对2的组合数,作为特例,C(0,2)=C(1,2)=0;

  我们用桶tab存放[L,R]中每种颜色的数量,假设我们求出了[L,R],求[L+1,R](或[L-1,R][L,R+1][L,r-1])时只需要把桶里面的--或++就可以了,令[L,R]的答案为ans,那么[L+1,R]的答案为ans-C(tab[L],2)+C(tab[L]+1,2),这是O(1)的;

  我们可以发现,假设我们求出了[L,R],那么我们求出[L’,R’]的时间为O(|L‘-L|+|R‘-R|),所以我们采用莫队算法。

  数据范围是n,m<=50000,这启发我们用分块(当然如果执意要写曼哈顿最小生成树那也没人拦你)。我们先将所有询问按照l为第一关键字,r为第二关键字排一遍序,再将排好序的数组分成[√n]块,再将分好块的数组按照r大小排一遍序,这样我们就做完了第一步了。

  接着我们按块处理,对于每一块,找出每个询问和它前面一个询问的差异,修改差异,不断地这么做,就可以得到答案。

  这样做总时间复杂度仅有O(n√n),比原有的O(n^2)的暴力快了许多,但这是为什么呢?

四、复杂度分析

  首先是分块这一步,这一步的时间复杂度毫无疑问地是O(√n*√n*log√n+nlogn)=O(nlogn);

  接着就到了莫队算法的精髓了,下面我们用通俗易懂的初中方法来证明它的时间复杂度是O(n√n);

  证:令每一块中L的最大值为max1,max2,max3,...,maxceil(√n).

  由第一次排序可知,max1<=max2<=...<=maxceil(√n)

  显然,对于每一块暴力求出第一个询问的时间复杂度为O(n)。

  考虑最坏的情况,在每一块中,R的最大值均为n,每次修改操作均要将L由maxi-1修改至maxi或由maxi修改至maxi-1。

  考虑R:因为R在块中已经排好序,所以在同一块修改完它的时间复杂度为O(n)。对于所有块就是O(n√n)。

  重点分析L:因为每一次改变的时间复杂度都是O(maxi-maxi-1)的,所以在同一块中时间复杂度为O(√n*(maxi-maxi-1)).

    将每一块L的时间复杂度合在一起,可以得到对于L的总时间复杂度为

    O(√n*(max1-1)+√n*(max2-max1)+√n*(max3-max2)+...+√n*(maxceil(√n)-maxceil(√n-1)))

      =O(√n*(max1-1+max2-max1+max3-max2+...+maxceil(√n-1)-maxceil(√n-2)+maxceil(√n)-maxceil(√n-1)))

      =O(√n*(maxceil(√n)-1))  (初中裂项求和)

  由题可知maxceil(√n)最大为n,所以L的总时间复杂度最坏情况下为O(n√n).

  综上所述,莫队算法的时间复杂度为O(n√n);

五、例题代码

  还是用emacs写的,所以还是两格缩进,不喜勿喷。

  

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 typedef long long ll;
 4 ll a[60000],tab[60000];
 5 struct ask{
 6   ll l,r,num;
 7 }b[60000];
 8 ll cmp(ask x,ask y){
 9   if(x.l<y.l) return 1;
10   if(x.l>y.l) return 0;
11   if(x.r<y.r) return 1;
12   return 0;
13 }
14 ll comp(ask x,ask y){
15   if(x.r<y.r) return 1;
16   if(x.r>y.r) return 0;
17   if(x.l<y.l) return 1;
18   return 0;
19 }
20 ll gcd(ll a,ll b){
21   if(!b) return a;
22   return gcd(b,a%b);
23 }ll n,m;
24 ll comb2[60000];//组合数C(n,2)
25 ll prix[60000],priy[60000];//答案
26 ll rep(ll ol,ll nl,ll lr,ll nr,ll &ans){//回答修改的问题,原来的是[ol,lr],现在是[nl,nr];
27   if(ol<=nl)
28     for(ll i=ol;i<nl;i++){ans-=comb2[tab[a[i]]]; tab[a[i]]--;ans+=comb2[tab[a[i]]];}
29   else
30     for(ll i=ol-1;i>=nl;i--){ans-=comb2[tab[a[i]]]; tab[a[i]]++;ans+=comb2[tab[a[i]]];}
31   for(ll i=lr+1;i<=nr;i++){ans-=comb2[tab[a[i]]]; tab[a[i]]++;ans+=comb2[tab[a[i]]];}
32   return ans;
33 }
34
35 int main(){
36   scanf("%lld%lld",&n,&m);comb2[1]=comb2[0]=0;
37   for(ll i=2;i<=n;i++)comb2[i]=(ll)((double)i/2.0*(double)(i-1));//计算组合数
38   for(ll i=1;i<=n;i++) scanf("%lld",&a[i]);
39   for(ll i=1;i<=m;i++){
40     scanf("%lld%lld",&b[i].l,&b[i].r);
41     b[i].num=i;
42   }
43   ll sq=sqrt(m);
44   sort(b+1,b+m+1,cmp);//第一次排序
45   for(ll i=1;i<=m;i+=sq){
46     sort(b+i,b+min(i+sq,m+1),comp);//第二次排序
47   }
48   for(ll i=1;i<=m;i+=sq){
49     ll ed=min(m,i+sq-1);
50     memset(tab,0,sizeof(tab));ll maxx=0;
51     long long ans=0;ans=rep(b[i].l,b[i].l,b[i].l-1,b[i].r,ans);//同下
52     prix[b[i].num]=ans;priy[b[i].num]=comb2[b[i].r-b[i].l+1];//暴力算出每块的第一个,其实这里可以不这么做,直接继承上一块也行
53     if(prix[b[i].num]==0)priy[b[i].num]=1;
54     else{ll g=gcd(prix[b[i].num],priy[b[i].num]);
55       prix[b[i].num]/=g;priy[b[i].num]/=g;}//约分
56     for(ll j=i+1;j<=ed;j++){
57       prix[b[j].num]=rep(b[j-1].l,b[j].l,b[j-1].r,b[j].r,ans);//从上一个询问推导这一个询问
58       priy[b[j].num]=comb2[b[j].r-b[j].l+1];
59       if(prix[b[j].num]==0)priy[b[j].num]=1;
60       else{
61       ll g=gcd(prix[b[j].num],priy[b[j].num]);
62       prix[b[j].num]/=g;priy[b[j].num]/=g;
63       }
64     }
65   }
66   for(ll i=1;i<=m;i++){
67     printf("%lld/%lld\n",prix[i],priy[i]);//这里需要注意,BZOJ有坑,cout是会RE的
68   }
69   return 0;
70 }

  

时间: 2024-10-26 09:14:24

莫队算法及其应用的相关文章

莫队算法

Beautiful Girl 题意 给定一个长度为 n 的序列 a[1], a[2], ..., a[n] . m 组询问 (l, r, K) , 求区间 [l, r] 去除重复的数之后的第 K 小. n, m <= 100000 . 分析 莫队算法 + 值域分块. 1 #include <cstdio> 2 #include <cstring> 3 #include <cstdlib> 4 #include <cctype> 5 #include &

BZOJ4241 历史研究 莫队算法 堆

欢迎访问~原文出处--博客园-zhouzhendong&AK 去博客园看该题解 题目 Description IOI国历史研究的第一人--JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件. 日记中记录了连续N天发生的时间,大约每天发生一件. 事件有种类之分.第i天(1<=i<=N)发生的事件的种类用一个整数Xi表示,Xi越大,事件的规模就越大. JOI教授决定用如下的方法分析这些日记: 1.

CodeForces - 86D 莫队算法

http://codeforces.com/problemset/problem/86/D 莫队算法就是调整查询的顺序,然后暴力求解. 每回可以通过现有区间解ans(l,r)得到区间(l+1,r),(l-1,r),(l,r+1),(l,r-1)的区间解. 调整方式http://blog.csdn.net/bossup/article/details/39236275 这题比那个还要简单,查询的是K^2*Z,很清楚就是莫队算法,然而做的时候没有学过,回来补题补到 关键是我一直没明白为什么重载小于号

codeforces 617 E. XOR and Favorite Number(莫队算法)

题目链接:http://codeforces.com/problemset/problem/617/E 题目: 给你a1 a2 a3 ··· an 个数,m次询问:在[L, R] 里面又多少中 [l, r] 使得 al xor al+1 xor ··· ar 为 k. 题解: 本题只有区间查询没有区间修改,而且数据量不大(10w),所以可以用离线的方法解决. 使用莫队算法来解决,就需要O(1)的修改[L, R+1] .[L, R-1].[L+1, R].[L-1, R]. 详细的莫队可以百度学一

(普通的)莫队算法简单介绍

莫队算法(由莫涛发明的)是一种离线的暴力算法(至少我这么认为).使用莫队算法的条件是,知道一个区间[l, r]的结果,那么也可以快速知道[l + 1, r],[l - 1, r], [l, r - 1], [l, r + 1]这四个区间的结果.于是可以想到,直接通过这样转移来解决一些问题.当然有些出题人机智,故意卡这种暴力,让你从头跑到尾然后从尾跑到头,于是时间复杂度高达O(n2) 而莫队算法就是通过改变处理询问的顺序来降低时间复杂度. 比如说现在知道一个区间[l1, r1],又要转移到[l2,

莫队算法良心讲解

问题:有n个数组成一个序列,有m个形如询问L, R的询问,每次询问需要回答区间内至少出现2次的数有哪些. 朴素的解法需要读取O(nm)次数.如果使用STL的Map来保存出现的次数,每次需要O(nmlogn)的复杂度.有没有更快的方法呢? 注意到询问并没有强制在线,因此我们可以使用离线方法.注意到一点,如果我们有计算完[L, R]的map,那么[L - 1, R].[L + 1, R].[L, R - 1].[L, R + 1]都能够在O(logn)的复杂度得出.是否能安排适当的询问顺序,使得每次

清橙A1206 小Z的袜子(莫队算法)

A1206. 小Z的袜子 时间限制:1.0s   内存限制:512.0MB 总提交次数:744   AC次数:210   平均分:44.44 将本题分享到: 查看未格式化的试题   提交   试题讨论 试题来源 2010中国国家集训队命题答辩 问题描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命-- 具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是

HYSBZ 2038 小Z的袜子(hose) (莫队算法)

题意:中文题. 析:很著名的莫队算法,先把这个求概率的式子表达出来,应该是分子:C(x1, 2) + C(x2, 2) + C(x3, 2) + ... + C(xn, 2)  分母:C(n, 2),然后化成分数的表达形式,[x1(x1-1)+x2(x2-1)+...+xn(xn-1)] / (n*(n-1))  然后再化简得到 (sigma(xi*xi)  - n) / (n*(n-1)) ,然后就是对每个区间进行运算,离线,把所以的序列分成sqrt(n)块,然后用两个指针,进行对数据的计算.

(预处理+莫队算法)HDU - 5381 The sum of gcd

题意: 一个长度为n的数列,m次查询L到R之间所有连续子序列的gcd之和. 分析: 很明显的莫队算法. 很明显发现了gcd是单调递减的,并且最多存在32个的性质. 想了很久,脑补了许多种方法来拉伸L和R,但是都有漏洞. 实际上,这道题还是比较复杂的.. 在思考的过程中,我没有充分利用gcd的递减性质. 这题其实这题有共通之处,至少在我的做法上是这样的. 可以发现,在R向右拉伸的过程中,增加的和只是从L到R+1中的每一个后缀的和. 向左则为减,L的移动同理. 那么我们只要提前预处理每个位置的前缀所

【BZOJ3781、2038】莫队算法2水题

[BZOJ3781]小B的询问 题意:有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数 题解:初学莫队算法,差不多明白了用莫队的情况,对于这种离线的,区间长度+1时可O(1)修改答案的题,运用莫队算法是最水的 将n分成sqrt(n)块,将询问按照左端点所在的块为第一关键字,右端点的具体位置为第二关键字排序,然后用指针l,r不断暴力平移到询问的左右端点处,