图像处理常用边缘检测算子总结(转)

不同图像灰度不同,边界处一般会有明显的边缘,利用此特征可以分割图像。需要说明的是:边缘和物体间的边界并不等同,边缘指的是图像中像素的值有突变的地方,而物体间的边界指的是现实场景中的存在于物体之间的边界。有可能有边缘的地方并非边界,也有可能边界的地方并无边缘,因为现实世界中的物体是三维的,而图像只具有二维信息,从三维到二维的投影成像不可避免的会丢失一部分信息;另外,成像过程中的光照和噪声也是不可避免的重要因素。正是因为这些原因,基于边缘的图像分割仍然是当前图像研究中的世界级难题,目前研究者正在试图在边缘提取中加入高层的语义信息。

在实际的图像分割中,往往只用到一阶和二阶导数,虽然,原理上,可以用更高阶的导数,但是,因为噪声的影响,在纯粹二阶的导数操作中就会出现对噪声的敏感现象,三阶以上的导数信息往往失去了应用价值。二阶导数还可以说明灰度突变的类型。在有些情况下,如灰度变化均匀的图像,只利用一阶导数可能找不到边界,此时二阶导数就能提供很有用的信息。二阶导数对噪声也比较敏感,解决的方法是先对图像进行平滑滤波,消除部分噪声,再进行边缘检测。不过,利用二阶导数信息的算法是基于过零检测的,因此得到的边缘点数比较少,有利于后继的处理和识别工作。

各种算子的存在就是对这种导数分割原理进行的实例化计算,是为了在计算过程中直接使用的一种计算单位。

1.Sobel算子

其主要用于边缘检测,在技术上它是以离散型的差分算子,用来运算图像亮度函数的梯度的近似值, Sobel算子是典型的基于一阶导数的边缘检测算子,由于该算子中引入了类似局部平均的运算,因此对噪声具有平滑作用,能很好的消除噪声的影响。Sobel算子对于象素的位置的影响做了加权,与Prewitt算子、Roberts算子相比因此效果更好。

Sobel算子包含两组3x3的矩阵,分别为横向及纵向模板,将之与图像作平面卷积,即可分别得出横向及纵向的亮度差分近似值。实际使用中,常用如下两个模板来检测图像边缘。

检测水平边沿 横向模板 :           检测垂直平边沿 纵向模板:

图像的每一个像素的横向及纵向梯度近似值可用以下的公式结合,来计算梯度的大小。

然后可用以下公式计算梯度方向。

在以上例子中,如果以上的角度Θ等于零,即代表图像该处拥有纵向边缘,左方较右方暗。

缺点是Sobel算子并没有将图像的主题与背景严格地区分开来,换言之就是Sobel算子并没有基于图像灰度进行处理,由于Sobel算子并没有严格地模拟人的视觉生理特征,所以提取的图像轮廓有时并不能令人满意。

2. Isotropic Sobel算子

Sobel算子另一种形式是(Isotropic Sobel)算子,加权平均算子,权值反比于邻点与中心点的距离,当沿不同方向检测边缘时梯度幅度一致,就是通常所说的各向同性Sobel(Isotropic Sobel)算子。模板也有两个,一个是检测水平边沿的 ,另一个是检测垂直平边沿的 。各向同性Sobel算子和普通Sobel算子相比,它的位置加权系数更为准确,在检测不同方向的边沿时梯度的幅度一致。

3. Roberts算子

罗伯茨算子、Roberts算子是一种最简单的算子,是一种利用局部差分算子寻找边缘的算子,他采用对角线方向相邻两象素之差近似梯度幅值检测边缘。检测垂直边缘的效果好于斜向边缘,定位精度高,对噪声敏感,无法抑制噪声的影响。1963年,Roberts提出了这种寻找边缘的算子。

Roberts边缘算子是一个2x2的模板,采用的是对角方向相邻的两个像素之差。从图像处理的实际效果来看,边缘定位较准,对噪声敏感。适用于边缘明显且噪声较少的图像分割。Roberts边缘检测算子是一种利用局部差分算子寻找边缘的算子,Robert算子图像处理后结果边缘不是很平滑。经分析,由于Robert算子通常会在图像边缘附近的区域内产生较宽的响应,故采用上述算子检测的边缘图像常需做细化处理,边缘定位的精度不是很高。

4. Prewitt算子

Prewitt算子是一种一阶微分算子的边缘检测,利用像素点上下、左右邻点的灰度差,在边缘处达到极值检测边缘,去掉部分伪边缘,对噪声具有平滑作用 。其原理是在图像空间利用两个方向模板与图像进行邻域卷积来完成的,这两个方向模板一个检测水平边缘,一个检测垂直边缘。

对数字图像f(x,y),Prewitt算子的定义如下:

G(i)=|[f(i-1,j-1)+f(i-1,j)+f(i-1,j+1)]-[f(i+1,j-1)+f(i+1,j)+f(i+1,j+1)]|

G(j)=|[f(i-1,j+1)+f(i,j+1)+f(i+1,j+1)]-[f(i-1,j-1)+f(i,j-1)+f(i+1,j-1)]|

则 P(i,j)=max[G(i),G(j)]或 P(i,j)=G(i)+G(j)

经典Prewitt算子认为:凡灰度新值大于或等于阈值的像素点都是边缘点。即选择适当的阈值T,若P(i,j)≥T,则(i,j)为边缘点,P(i,j)为边缘图像。这种判定是欠合理的,会造成边缘点的误判,因为许多噪声点的灰度值也很大,而且对于幅值较小的边缘点,其边缘反而丢失了。

Prewitt算子对噪声有抑制作用,抑制噪声的原理是通过像素平均,但是像素平均相当于对图像的低通滤波,所以Prewitt算子对边缘的定位不如Roberts算子。

因为平均能减少或消除噪声,Prewitt梯度算子法就是先求平均,再求差分来求梯度。水平和垂直梯度模板分别为:

检测水平边沿 横向模板                 检测垂直平边沿 纵向模板:

该算子与Sobel算子类似,只是权值有所变化,但两者实现起来功能还是有差距的,据经验得知Sobel要比Prewitt更能准确检测图像边缘。

5.Laplacian算子

Laplace算子是一种各向同性算子,二阶微分算子,在只关心边缘的位置而不考虑其周围的象素灰度差值时比较合适。Laplace算子对孤立象素的响应要比对边缘或线的响应要更强烈,因此只适用于无噪声图象。存在噪声情况下,使用Laplacian算子检测边缘之前需要先进行低通滤波。所以,通常的分割算法都是把Laplacian算子和平滑算子结合起来生成一个新的模板。

拉普拉斯算子也是最简单的各向同性微分算子,具有旋转不变性。一个二维图像函数的拉普拉斯变换是各向同性的二阶导数,定义

了更适合于数字图像处理,将拉式算子表示为离散形式:

另外,拉普拉斯算子还可以表示成模板的形式,如下图所示,

离散拉普拉斯算子的模板:, 其扩展模板: 。

拉式算子用来改善因扩散效应的模糊特别有效,因为它符合降制模型。扩散效应是成像过程中经常发生的现象。

Laplacian算子一般不以其原始形式用于边缘检测,因为其作为一个二阶导数,Laplacian算子对噪声具有无法接受的敏感性;同时其幅值产生算边缘,这是复杂的分割不希望有的结果;最后Laplacian算子不能检测边缘的方向;所以Laplacian在分割中所起的作用包括:(1)利用它的零交叉性质进行边缘定位;(2)确定一个像素是在一条边缘暗的一面还是亮的一面;一般使用的是高斯型拉普拉斯算子(Laplacian of a Gaussian,LoG),由于二阶导数是线性运算,利用LoG卷积一幅图像与首先使用高斯型平滑函数卷积改图像,然后计算所得结果的拉普拉斯是一样的。所以在LoG公式中使用高斯函数的目的就是对图像进行平滑处理,使用Laplacian算子的目的是提供一幅用零交叉确定边缘位置的图像;图像的平滑处理减少了噪声的影响并且它的主要作用还是抵消由Laplacian算子的二阶导数引起的逐渐增加的噪声影响。

6.Canny算子

该算子功能比前面几种都要好,但是它实现起来较为麻烦,Canny算子是一个具有滤波,增强,检测的多阶段的优化算子,在进行处理前,Canny算子先利用高斯平滑滤波器来平滑图像以除去噪声,Canny分割算法采用一阶偏导的有限差分来计算梯度幅值和方向,在处理过程中,Canny算子还将经过一个非极大值抑制的过程,最后Canny算子还采用两个阈值来连接边缘。

Canny边缘检测算法

step1: 用高斯滤波器平滑图象;

step2: 用一阶偏导的有限差分来计算梯度的幅值和方向;

step3: 对梯度幅值进行非极大值抑制

step4: 用双阈值算法检测和连接边缘

详解:http://www.cnblogs.com/cfantaisie/archive/2011/06/05/2073168.html

(1)图象边缘检测必须满足两个条件:一能有效地抑制噪声;二必须尽量精确确定边缘的位置。

(2)根据对信噪比与定位乘积进行测度,得到最优化逼近算子。这就是Canny边缘检测算子。

(3)类似与Marr(LoG)边缘检测方法,也属于先平滑后求导数的方法。

时间: 2024-11-05 11:29:04

图像处理常用边缘检测算子总结(转)的相关文章

图像处理常用边缘检测算子总结

图像处理常用边缘检测算子总结 转 不同图像灰度不同,边界处一般会有明显的边缘,利用此特征可以分割图像.需要说明的是:边缘和物体间的边界并不等同, 边缘指的是图像中像素的值有突变的地方,而物体间的边界指的是现实场景中的存在于物体之间的边界.有可能有边缘的地方并非边界,也有可能边界的地方并无边 缘,因为现实世界中的物体是三维的,而图像只具有二维信息,从三维到二维的投影成像不可避免的会丢失一部分信息:另外,成像过程中的光照和噪声也是不可避 免的重要因素.正是因为这些原因,基于边缘的图像分割仍然是当前图

OpenCV图像处理篇之边缘检测算子

3种边缘检测算子 灰度或结构等信息的突变位置是图像的边缘,图像的边缘有幅度和方向属性,沿边缘方向像素变化缓慢,垂直边缘方向像素变化剧烈.因此,边缘上的变化能通过梯度计算出来. 一阶导数的梯度算子 对于二维的图像,梯度定义为一个向量, Gx对于x方向的梯度,Gy对应y方向的梯度,向量的幅值本来是 mag(f)?=?(Gx2?+?Gy2)1/2,为简化计算,一般用mag(f)=|Gx|+|Gy|近似,幅值同时包含了x而后y方向的梯度信息.梯度的方向为 α?=?arctan(Gx/Gy) . 由于图像

边缘检测算子(edge detectors)

边缘检测算子是一组用于在亮度函数中定位变化的非常重要的局部图像预处理方法.描述边缘的检测子使用偏导数,图像函数的变化可以用指向函数函数最大增长方向的梯度来表示. 不同图像灰度不同,边界处一般会有明显的边缘,利用此特征可以分割图像.需要说明的是:边缘和物体间的边界并不等同,边缘指的是图像中像素的值有突变的地方,而物体间的边界指的是现实场景中的存在于物体之间的边界.有可能有边缘的地方并非边界,也有可能边界的地方并无边缘,因为现实世界中的物体是三维的,而图像只具有二维信息,从三维到二维的投影成像不可避

5.2 基本边缘检测算子—Sobel

Sobel算子是应用广泛的离散微分算子之一,用于图像处理中的边缘检测,计算图像灰度的近似梯度. 基于图像卷积来实现在水平方向和垂直方向检测对应方向上的边缘. 对于源图像与奇数Sobel水平核Gx.垂直核Gy进行卷积可计算水平与垂直变换. Sobel算子在进行边缘检测时候效率较高,对精度要求不是很高时候,是一种较为常用的边缘检测方法. Sobel算子对沿着x轴和y轴的排列表示得很好,但是对于其他角度的表示却不够精确,这时候我们可以使用Scharr滤波器. 5.2.1 非极大值一直Sobel检测 步

【数字图像处理】边缘检测与图像分割

原文链接:边缘检测与图像分割 作者:HUSTLX 1图像分割原理 图像分割的研究多年来一直受到人们的高度重视,至今提出了各种类型的分割算法.Pal把图像分割算法分成了6类:阈值分割,像素分割.深度图像分割.彩色图像分割,边缘检测和基于模糊集的方法.但是,该方法中,各个类别的内容是有重叠的.为了涵盖不断涌现的新方法,有的研究者将图像分割算法分为以下六类:并行边界分割技术.串行边界分割技术.并行区域分割技术.串行区域分割技术.结合特定理论工具的分割技术和特殊图像分割技术.而在较近的一篇综述中,更有学

python+opencv实现机器视觉基础技术(边缘提取,图像滤波,边缘检测算子,投影,车牌字符分割)

目录 一:边缘提取 1.对图像进行阈值分割并反色 2.边缘提取 二:图像滤波 1.读取原图 2.均值滤波 3.中值滤波 4.高斯滤波 5.高斯边缘检测 三:边缘检测算子 1.显示原图 2.对图像进行反色 3.对图像用sobel方法进行边缘检测 4.对图像用robert方法进行边缘检测 四:投影 1.显示原图 2.垂直方向投影 3.水平方向投影 五:车牌字符分割 1.读取原图 2.灰度转换 3.反色 4.阈值分割 5.投影 6.字符识别匹配分割 ??机器视觉是人工智能正在快速发展的一个分支.简单说

边缘检测算子和小波变换提取图像边缘【matlab】

Roberts边缘检测算子:根据一对互相垂直方向上的差分可用来计算梯度的原理,采用对角线方向相邻两像素之差. 小波变换的方法比较适用于展现夹带在正常信号中的瞬间反常现象,具有方向敏感性.所以可以边缘检测. Roberts边缘检测算子: clear; I=imread('D:\文件及下载相关\图片\gray2.png'); I=rgb2gray(I); grayPic=mat2gray(I); [m,n]=size(grayPic); newGrayPic=grayPic; robertsNum=

灰度图像--图像分割 边缘检测算子 综述

转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意.有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!! 文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro 开篇废话 本来想这

常用Actoin算子 与 内存管理

一.常用Actoin算子 (reduce .collect .count .take .saveAsTextFile . countByKey .foreach ) collect:从集群中将所有的计算结果获取到本地内存,然后展示 take:从集群中将一部分的计算结果获取到本地内存,然后展示 rdd.collect rdd.take(n) 二.内存管理 1.RDD内存持久化