poj 1986 Distance Queries 带权lca 模版题

Distance Queries

Description

Farmer John‘s cows refused to run in his marathon since he chose a path much too long for their leisurely lifestyle. He therefore wants to find a path of a more reasonable length. The input to this problem consists of the same input as in "Navigation Nightmare",followed by a line containing a single integer K, followed by K "distance queries". Each distance query is a line of input containing two integers, giving the numbers of two farms between which FJ is interested in computing distance (measured in the length of the roads along the path between the two farms). Please answer FJ‘s distance queries as quickly as possible!

Input

* Lines 1..1+M: Same format as "Navigation Nightmare"

* Line 2+M: A single integer, K. 1 <= K <= 10,000

* Lines 3+M..2+M+K: Each line corresponds to a distance query and contains the indices of two farms.

Output

* Lines 1..K: For each distance query, output on a single line an integer giving the appropriate distance.

Sample Input

7 6
1 6 13 E
6 3 9 E
3 5 7 S
4 1 3 N
2 4 20 W
4 7 2 S
3
1 6
1 4
2 6

Sample Output

13
3
36

Hint

Farms 2 and 6 are 20+3+13=36 apart.

模版题

#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
#define true ture
#define false flase
using namespace std;
#define ll long long
#define inf 0xfffffff
int scan()
{
    int res = 0 , ch ;
    while( !( ( ch = getchar() ) >= ‘0‘ && ch <= ‘9‘ ) )
    {
        if( ch == EOF )  return 1 << 30 ;
    }
    res = ch - ‘0‘ ;
    while( ( ch = getchar() ) >= ‘0‘ && ch <= ‘9‘ )
        res = res * 10 + ( ch - ‘0‘ ) ;
    return res ;
}
#define maxn 100010
#define M 22
struct is
{
    int v,next,w;
} edge[maxn*2];
int deep[maxn],jiedge;
int dis[maxn];
int head[maxn];
int rudu[maxn];
int fa[maxn][M];
void add(int u,int v,int w)
{
    jiedge++;
    edge[jiedge].v=v;
    edge[jiedge].w=w;
    edge[jiedge].next=head[u];
    head[u]=jiedge;
}
void dfs(int u)
{
    for(int i=head[u]; i; i=edge[i].next)
    {
        int v=edge[i].v;
        int w=edge[i].w;
        if(!deep[v])
        {
            dis[v]=dis[u]+edge[i].w;
            deep[v]=deep[u]+1;
            fa[v][0]=u;
            dfs(v);
        }
    }
}
void st(int n)
{
    for(int j=1; j<M; j++)
        for(int i=1; i<=n; i++)
            fa[i][j]=fa[fa[i][j-1]][j-1];
}
int LCA(int u , int v)
{
    if(deep[u] < deep[v]) swap(u , v) ;
    int d = deep[u] - deep[v] ;
    int i ;
    for(i = 0 ; i < M ; i ++)
    {
        if( (1 << i) & d )  // 注意此处,动手模拟一下,就会明白的
        {
            u = fa[u][i] ;
        }
    }
    if(u == v) return u ;
    for(i = M - 1 ; i >= 0 ; i --)
    {
        if(fa[u][i] != fa[v][i])
        {
            u = fa[u][i] ;
            v = fa[v][i] ;
        }
    }
    u = fa[u][0] ;
    return u ;
}
void init()
{
    memset(head,0,sizeof(head));
    memset(fa,0,sizeof(fa));
    memset(rudu,0,sizeof(rudu));
    memset(deep,0,sizeof(deep));
    jiedge=0;
}
int main()
{
    int x,n,t;
    while(~scanf("%d%d",&n,&x))
    {
        init();

        for(int i=0; i<x; i++)
        {
            char a[2];
            int u,v,w;
            scanf("%d%d%d %s",&u,&v,&w,a);
            add(u,v,w);
            add(v,u,w);//双向可以从任意点开始,并且避免有环
        }
                deep[1]=1;
                dis[1]=0;
                dfs(1);
        st(n);
        scanf("%d",&t);
        while(t--)
        {
            int a,b;
            scanf("%d%d",&a,&b);
            printf("%d\n",dis[a]-2*dis[LCA(a,b)]+dis[b]);
        }
    }
    return 0;
}
时间: 2024-12-22 22:20:43

poj 1986 Distance Queries 带权lca 模版题的相关文章

POJ 1986 Distance Queries LCA两点距离树

标题来源:POJ 1986 Distance Queries 意甲冠军:给你一棵树 q第二次查询 每次你问两个点之间的距离 思路:对于2点 u v dis(u,v) = dis(root,u) + dis(root,v) - 2*dis(roor,LCA(u,v)) 求近期公共祖先和dis数组 #include <cstdio> #include <cstring> #include <vector> using namespace std; const int max

POJ 1986 Distance Queries LCA树上两点的距离

题目来源:POJ 1986 Distance Queries 题意:给你一颗树 q次询问 每次询问你两点之间的距离 思路:对于2点 u v dis(u,v) = dis(root,u) + dis(root,v) - 2*dis(roor,LCA(u,v)) 求最近公共祖先和dis数组 #include <cstdio> #include <cstring> #include <vector> using namespace std; const int maxn =

POJ 1986 Distance Queries 【输入YY &amp;&amp; LCA(Tarjan离线)】

任意门:http://poj.org/problem?id=1986 Distance Queries Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 16648   Accepted: 5817 Case Time Limit: 1000MS Description Farmer John's cows refused to run in his marathon since he chose a path much t

poj 1986 Distance Queries LCA

题目链接:http://poj.org/problem?id=1986 Farmer John's cows refused to run in his marathon since he chose a path much too long for their leisurely lifestyle. He therefore wants to find a path of a more reasonable length. The input to this problem consists

POJ 1986 Distance Queries (在线LCA转RMQ)

题目地址:POJ 1986 纯模板题.输入的最后一个字母是多余的,完全不用管.还有注意询问的时候有相同点的情况. 代码如下: #include <iostream> #include <string.h> #include <math.h> #include <queue> #include <algorithm> #include <stdlib.h> #include <map> #include <set>

POJ 1986 Distance Queries

http://poj.org/problem?id=1986 题意:一棵树里找到两个点的距离.(不用考虑不联通的情况) 题解:LCA模板题. 1 #include <iostream> 2 #include <algorithm> 3 #include <cstring> 4 #include <string> 5 #include <cstdio> 6 #include <cmath> 7 #include <queue>

POJ 1986 Distance Queries(LCA)

[题目链接] http://poj.org/problem?id=1986 [题目大意] 给出一棵树,问任意两点间距离. [题解] u,v之间距离为dis[u]+dis[v]-2*dis[LCA(u,v)] [代码] #include <cstdio> #include <algorithm> #include <cstring> using namespace std; const int N=300010; int d[N],num[N],dis[N],ed=0,x

POJ - 1986 Distance Queries(离线Tarjan算法)

1.一颗树中,给出a,b,求最近的距离.(我没考虑不联通的情况,即不是一颗树的情况) 2.用最近公共祖先来求, 记下根结点到任意一点的距离dis[],这样ans = dis[u] + dis[v] - 2 * dis[lca(u, v)] 3. /* 离线算法,LCATarjan 复杂度O(n+Q); */ #include<iostream> #include<stdio.h> #include<string.h> using namespace std; const

Poj 1182种类(带权)并查集

题目链接 食物链 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 44316 Accepted: 12934 Description 动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形.A吃B, B吃C,C吃A. 现有N个动物,以1-N编号.每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种. 有人用两种说法对这N个动物所构成的食物链关系进行描述: 第一种说法是"1 X Y",表示X和Y是