单例模式中用volatile和synchronized来满足双重检查锁机制

背景:我们在实现单例模式的时候往往会忽略掉多线程的情况,就是写的代码在单线程的情况下是没问题的,但是一碰到多个线程的时候,由于代码没写好,就会引发很多问题,而且这些问题都是很隐蔽和很难排查的。

例子1:没有volatile修饰的uniqueInstance

public class Singleton {
    private static Singleton uniqueInstance;

    private Singleton(){
    }

    public static Singleton getInstance(){
        if(uniqueInstance == null){ //#1
            synchronized(Singleton.class){ //#2
                if(uniqueInstance == null){ //#3
                    uniqueInstance = new Singleton(); //#4
                    System.out.println(Thread.currentThread().getName() + ": uniqueInstance is initalized..."); //#5.1
                } else {
                    System.out.println(Thread.currentThread().getName() + ": uniqueInstance is not null now..."); //#5.2
                }
            }
        }
        return uniqueInstance;
    }
}
 1 public class TestSingleton {
 2     public static void main(final String[] args) throws InterruptedException {
 3         for (int i = 1; i <= 100000; i++) {
 4             final Thread t1 = new Thread(new ThreadSingleton());
 5             t1.setName("thread" + i);
 6             t1.start();
 7         }
 8     }
 9
10     public static class ThreadSingleton implements Runnable {
11         @Override
12         public void run() {
13             Singleton.getInstance();
14         }
15     }
16 }

这里面的结果有可能会是:(没有真正重现过,太难模拟了)

1 thread2: uniqueInstance is initalized...
2 thread3: uniqueInstance is initalized...
Singleton被实例化两次了,和我们的单例模式设计期望值不一致:类永远只被实例化一次.

原因分析:1. thread2进入#1, 这时子线程的uniqueInstance都是为空的,thread2让出CPU资源给thread32. thread3进入#1, 这时子线程的uniqueInstance都是为空的, thread3让出CPO资源给thread23. thread2会依次执行#2,#3,#4, #5.1,最终在thread2里面实例化了uniqueInstance。thread2执行完毕让出CPO资源给thread34. thread3接着#1跑下去,跑到#3的时候,由于#1里面拿到的uniqueInstance还是空(并没有及时从thread2里面拿到最新的),所以thread3仍然会执行#4,#5.15. 最后在thread2和thread3都实例化了uniqueInstance

例子2:用volatile修饰的uniqueInstance

这里就不贴重复的代码了,因为只是加多一个volatile来修饰成员变量:uniqueInstance,

但是结果却是正确的了, 其中一个可能结果:

thread2: uniqueInstance is initalized
thread3: uniqueInstance is not null now...

原因分析:

volatile(java5):可以保证多线程下的可见性;

读volatile:每当子线程某一语句要用到volatile变量时,都会从主线程重新拷贝一份,这样就保证子线程的会跟主线程的一致。

写volatile: 每当子线程某一语句要写volatile变量时,都会在读完后同步到主线程去,这样就保证主线程的变量及时更新。

1. thread2进入#1, 这时子线程的uniqueInstance都是为空的(java内存模型会从主线程拷贝一份uniqueInstance=null到子线程thread2),thread2让出CPU资源给thread32. thread3进入#1, 这时子线程的uniqueInstance都是为空的(java内存模型会从主线程拷贝一份uniqueInstance=null到子线程thread2), thread3让出CPO资源给thread23. thread2会依次执行#2,#3,#4, #5.1,最终在thread2里面实例化了uniqueInstance(由于是volatile修饰的变量,会马上同步到主线程的变量去)。thread2执行完毕让出CPO资源给thread34. thread3接着#1跑下去,跑到#3的时候,会又一次从主线程拷贝一份uniqueInstance!=null回来,所以thread3就直接跑到了#5.25. 最后在thread3不再会重复实例化uniqueInstance了

参考文章:如何在Java中使用双重检查锁实现单例

时间: 2024-12-13 15:29:44

单例模式中用volatile和synchronized来满足双重检查锁机制的相关文章

双重检查锁为什么要使用volatile字段?

双重锁的由来 单例模式中,有一个DCL(双重锁)的实现方式.在Java程序中,有时候可能需要推迟一些高开销的对象初始化操作,并且只有在使用这些对象时才开始初始化. 下面是非线程安全的延迟初始化对象的实例代码. /** * @author xiaoshu */ public class Instance { } /** * 非线程安全的延迟初始化对象 * * @author xiaoshu */ public class UnsafeLazyInitialization { private sta

线程安全的单例模式及双重检查锁—个人理解

在web应用中服务器面临的是大量的访问请求,免不了多线程程序,但是有时候,我们希望在多线程应用中的某一个类只能新建一个对象的时候,就会遇到问题. 首先考虑单线程,如果要求只能新建一个对象,那么构造函数我们要设为private.简单的想法: class singleton{ private singleton(){ //..... } private static singleton instance; public static singleton getinstance(){ if(insta

单例模式中 的 双重检查锁 概念与用法

public class Singleton { //私有的 静态的 本类属性 private volatile static Singleton _instance; //私有化构造器 private Singleton() {} /* * 1st version: creates multiple instance if two thread access * this method simultaneouslyX */ public static Singleton getInstance

关于并发场景下,通过双重检查锁实现延迟初始化的优化问题隐患的记录

首先,这个问题是从<阿里巴巴Java开发手册>的1.6.12(P31)上面看到的,里面有这样一句话,并列出一种反例代码(以下为仿写,并非与书上一致): 在并发场景下,通过双重检查锁(double-checked locking)实现延迟初始化的优化问题隐患,推荐解决方案中较为简单的一种(适用于JDK5及以上的版本),即目标属性声明为volatile型. 1 public class Singleton { 2 private static Singleton instance=null; 3

单例陷阱——双重检查锁中的指令重排问题

之前我曾经写过一篇文章<单例模式有8种写法,你知道么?>,其中提到了一种实现单例的方法-双重检查锁,最近在读并发方面的书籍,发现双重检查锁使用不当也并非绝对安全,在这里分享一下. 单例回顾 首先我们回顾一下最简单的单例模式是怎样的? /** *单例模式一:懒汉式(线程安全) */ public class Singleton1 { private static Singleton1 singleton1; private Singleton1() { } public static Singl

C++的双重检查锁并不安全(转)

一个典型的单例模式构建对象的双重检查锁如下: 1 static Singleton * getSingleObject() 2 { 3 if(singleObject==NULL) 4 { 5 lock(); 6 if(singleObject==NULL) 7 { 8 singleObject = new Singleton(); 9 } 10 unlock(); 11 } 12 return singleObject; 13 } 该代码的逻辑是:getSingleObject()函数获得对象

从单例的双重检查锁想到的

常说的单例有懒汉跟饿汉两种写法.饿汉由于类加载的时候就创建了对象,因此不存在并发拿到不同对象的问题,但会由于开始就加载了对象,可能会造成一些启动缓慢等性能问题:而懒汉虽然避免了这个问题,但普通的写法会在高并发环境下创建多个对象,单纯加synchronize又会明显降低并发效率,较好的两种写法是静态内部类跟双重检查锁两种. 双重检查锁这个,大家都很熟悉了,上代码: public class SingleTest { private static SingleTest singleTest; //获

[杂谈]C++的双重检查锁并不安全

原文地址 http://www.cnblogs.com/hebaichuanyeah/p/6298513.html 一个典型的单例模式构建对象的双重检查锁如下: static Singleton * getSingleObject() { if(singleObject==NULL) { lock(); if(singleObject==NULL) { singleObject = new Singleton(); } unlock(); } return singleObject; } 该代码

双重检查锁单例模式为什么要用volatile关键字?

前言 从Java内存模型出发,结合并发编程中的原子性.可见性.有序性三个角度分析volatile所起的作用,并从汇编角度大致说了volatile的原理,说明了该关键字的应用场景:在这补充一点,分析下volatile是怎么在单例模式中避免双检锁出现的问题的. 并发编程的3个条件 1.原子性:要实现原子性方式较多,可用synchronized.lock加锁,AtomicInteger等,但volatile关键字是无法保证原子性的:2.可见性:要实现可见性,也可用synchronized.lock,v